Как рассчитать силу натяжения в физике. Напряженность поля заряженной нити Чему равна сила натяжения каждой нити

Рассмотрим бесконечную нить, несущую заряд, равномерно распределённый по её длине. Заряд, сосредоточенный на бесконечно нити, конечно, тоже бесконечен, и поэтому он не может служить количественной характеристикой степени заряженности нити. В качестве такой характеристики принимается «линейная плотность заряда ». Эта величина равна заряду, распределённому на отрезке нити единичной длины:

Выясним, какова напряженность поля, создаваемого заряженной нитью на расстоянии а от неё (рис. 1.12).

Рис. 1.12.

Для вычисления напряжённости вновь воспользуемся принципом суперпозиции электрических полей и законом Кулона. Выберем на нити элементарный участок dl .На этом участке сосредоточен заряд dq = tdl , который можно считать точечным. В точке А такой заряд создаёт поле (см. 1.3)

Исходя из симметрии задачи, можно заключить, что искомый вектор напряжённости поля будет направлен по линии, перпендикулярной нити, то есть вдоль оси х . Поэтому сложение векторов напряжённости, можно заменить сложением их проекцией на это направление.

(1.7)

Рис. (1.12 b) позволяет сделать следующие заключения:

Таким образом

. (1.9)

Используя (1.8) и (1.9) в уравнении (1.7), получим

Теперь для решения задачи осталось проинтегрировать (1.10) по всей длине нити. Это означает, что угол a будет меняться от до .

В этой задаче поле обладает цилиндрической симметрией. Напряжённость поля прямо пропорциональна линейной плотности заряда на нити t и обратно пропорциональна расстоянию а от нити до той точки, где измеряется напряжённость.

Лекция 2 «Теорема Гаусса для электрического поля»

План лекции

Поток вектора напряженности электрического поля.

Теорема Гаусса для электрического поля.

Применение теоремы Гаусса для расчёта электрических полей.

Поле бесконечной заряженной нити.

Поле бесконечной заряженной плоскости. Поле плоского конденсатора.

Поле сферического конденсатора.

Первую лекцию мы закончили расчётом напряжённости полей электрического диполя и бесконечно заряженной нити. В обоих случаях использовался принцип суперпозиции электрических полей. Теперь обратимся ещё к одному методу вычисления напряжённости, основанному на теореме Гаусса для электрического поля. В этой теореме речь идёт о потоке вектора напряжённости через произвольную замкнутую поверхность. Поэтому прежде чем преступить к формулировке и доказательству теоремы, обсудим понятие «поток вектора».

Поток вектора напряжённости электрического поля

Выделим в однородном электрическом поле плоскую поверхность (рис. 2.1.). Эта поверхность - вектор, численно равный площади поверхности DS и направленный перпендикулярно поверхности

Рис. 2.1.

Но единичный нормальный вектор может быть направлен как в одну, так и в другую сторону от поверхности (рис. 2.2.). Произвольно выберем положительное направление нормали так, как это показано на рис. 2.1. По определению потоком вектора напряжённости электрического поля через выделенную поверхность называется скалярное произведение этих двух векторов:

Рис. 2.2.

Если поле в общем случае неоднородно, а поверхность S , через которую следует вычислить поток, не плоская, то эту поверхность делят на элементарные участки , в пределах которых напряжённость можно считать неизменённой, а сами участки - плоскими (рис. 2.3.) Поток вектора напряжённости через такой элементарный участок вычисляется по определению потока

Здесь E n = E ∙ cosa - проекция вектора напряжённости на направление нормали . Полный поток через всю поверхность S найдём, проинтегрировав (2.3) по всей поверхности

(2.4)

Рис. 2.3.

Теперь представим себе замкнутую поверхность в электрическом поле. Для отыскания потока вектора напряжённости через подобную поверхность проделаем следующие операции (рис. 2.4.):

Разделим поверхность на участки . Важно отметить при этом, что в случае замкнутой поверхности положительной считается только «внешняя» нормаль .

Вычислим поток на каждом элементарном участке :

Обратите внимание на то, что вектор «вытекающий» из замкнутой поверхности создаёт положительный поток, а «втекающий» - отрицательный.

Для вычисления полного потока вектора напряжённости через всю замкнутую поверхность, все эти потоки нужно алгебраически сложить, то есть уравнение (2.3) проинтегрировать по замкнутой поверхности S

Силой натяжения называют ту, что действует на объект, сравнимый с проволокой, шнуром, кабелем, ниткой и так далее. Это могут быть несколько объектов сразу, в таком случае сила натяжения будет действовать на них и необязательно равномерно. Объектом натяжения называют любой предмет, подвешенный на все вышеперечисленное. Но кому это нужно знать? Несмотря на специфичность информации, она может пригодиться даже в бытовых ситуациях.

Например, при ремонте дома или квартиры . Ну и, конечно же, всем людям, чья профессия связана с расчетами:

  • инженерам;
  • архитекторам;
  • проектировщикам и пр.

Натяжения нити и подобных объектов

А зачем им это знать и какая от этого практическая польза? В случае с инженерами и конструкторами знания о мощи натяжения позволят создавать устойчивые конструкции . Это означает, что сооружения, техника и прочие конструкции смогут дольше сохранять свою целостность и прочность. Условно, эти расчеты и знания можно разделить на 5 основных пунктов, чтобы в полной мере понять, о чем идет речь.

1 Этап

Задача: определить силу натяжения на каждом из концов нити. Эту ситуацию можно рассматривать как результат воздействия сил на каждый конец нити. Она равняется массе, помноженной на ускорение свободного падения. Предположим, что нить натянута туго. Тогда любые воздействия на объект приведет к изменению натяжения (в самой нити). Но даже при отсутствии активных действий, по умолчанию будет действовать сила притяжения. Итак, подставим формулу: Т=м*g+м*а, где g – ускорение падения (в данном случае подвешенного объекта), а – любое иное ускорение, действующее извне.

Есть множество сторонних факторов, влияющих на расчеты – вес нити, ее кривизна и так далее . Для простых расчетов это мы не будем пока что учитывать. Иными словами – пусть нить будет идеальна с математической точки зрения и «без изъянов».

Возьмем «живой» пример. На балке подвешена прочная нить с грузом в 2 кг. При этом отсутствует ветер, покачивания и прочие факторы, так или иначе влияющие на наши расчеты. Тогда мощь натяжения равна силе тяжести. В формуле это можно выразить так: Fн=Fт=м*g, в нашем случае это 9,8*2=19,6 ньютона.

2 Этап

Заключается он в вопросе об ускорении . К уже имеющейся ситуации давайте добавим условие. Суть его в том, чтобы на нить действовало еще и ускорение. Возьмем пример попроще. Представим, что нашу балку теперь поднимают вверх со скоростью 3 м/с. Тогда, к натяжению прибавится ускорение груза и формула примет следующий вид: Fн=Fт+уск*м. Ориентируясь на прошлые расчеты получаем: Fн=19,6+3*2=25,6 ньютона.

3 Этап

Тут уже посложнее, так как речь идет об угловом вращении . Следует понимать, что при вращении объекта вертикально, сила, воздействующая на нить, будет намного больше в нижней точке. Но давайте возьмем пример с несколько меньшей амплитудой качания (по типу маятника). В этом случае для расчетов нужна формула: Fц=м* v²/r. Тут искомое значение обозначает дополнительную мощь натяжения, v – скорость вращения подвешенного груза, а r – радиус окружности, по которому вращается груз. Последнее значение фактически равняется длине нити, пускай она составляет 1,7 метра.

Итак, подставляя значения, находим центробежные данные: Fц=2*9/1,7=10,59 ньютона. А теперь, чтобы узнать полную силу натяжения нити, надо к имеющимся данным о состоянии покоя прибавить центробежную силу: 19,6+10,59=30,19 ньютона.

4 Этап

Следует учитывать меняющуюся силу натяжения по мере прохождения груза через дугу . Иными словами – независимо от постоянной величины притяжения, центробежная (результирующая) сила меняется по мере того, как качается подвешенный груз.

Чтобы лучше понять этот аспект, достаточно представить себе привязанный груз к веревке, которую можно свободно вращать вокруг балки, к которой она закреплена (как качели). Если веревку раскачать достаточно сильно, то в момент нахождения в верхнем положении сила притяжения будет действовать в «обратную» сторону относительно силы натяжения веревки. Иными словами – груз станет «легче», из-за чего ослабнет и натяжение на веревку.

Предположим, что маятник отклоняется на угол, равный двадцати градусам от вертикали и движется со скоростью 1,7 м/с. Сила притяжения (Fп) при этих параметрах будет равна 19,6*cos(20)=19,6*0,94=18,424 Н; центробежная сила (F ц=mv²/r)=2*1,7²/1,7=3,4 Н; ну а полное натяжение (Fпн) будет равняться Fп+ Fц=3,4+18,424=21,824 Н.

5 Этап

Его суть заключается в силе трения между грузом и другим объектом , что в совокупности косвенно влияет на натяжение веревки. Иначе говоря – сила трения способствует увеличению силы натяжения. Это хорошо видно на примере перемещения объектов по шершавой и гладкой поверхностях. В первом случае трение будет большим, поэтому и сдвигать предмет становится тяжелее.

Общее натяжение в данном случае вычисляется по формуле: Fн=Fтр+Fу, где Fтр – трение, а Fу – ускорение. Fтр=мкР, где мк – трение между объектами, а Р – сила взаимодействия между ними.

Чтобы лучше понять данный аспект, рассмотрим задачу. Допустим, у нас груз 2 кг и коэффициент трения равен 0,7 с ускорением движения 4м/с постоянной скорости. Теперь задействуем все формулы и получаем:

  1. Сила взаимодействия - Р=2*9,8=19,6 ньютона.
  2. Трение - Fтр=0,7*19,6=13,72 Н.
  3. Ускорение - Fу=2*4=8 Н.
  4. Общая сила натяжения - Fн=Fтр+Fу=13,72+8=21,72 ньютона.

Теперь вы знаете больше и можете сами находить и рассчитывать нужные значения. Конечно, для более точных расчетов нужно учитывать больше факторов, но для сдачи курсовой и реферата этих данных вполне достаточно.

Видео

Это видео поможет вам лучше разобраться в данной теме и запомнить ее.

популярное определение

Сила - это действие, которое может изменить состояние покоя или движения тела ; следовательно, он может ускорять или изменять скорость, направление или направление движения данного тела. Напротив, напряженность - это состояние тела, подверженного действию противодействующих сил, которые его притягивают.

Она известна как сила растяжения, которая при воздействии на упругое тело создает напряжение; Эта последняя концепция имеет различные определения, которые зависят от отрасли знаний, из которой она анализируется.

Канаты, например, позволяют передавать силы от одного тела к другому. Когда две равные и противоположные силы применяются на концах веревки, веревка становится натянутой. Короче говоря, силы натяжения - это каждая из этих сил, которая поддерживает канат без разрушения .

Физика и инженерия говорят о механическом напряжении, чтобы обозначить силу на единицу площади в окружении материальной точки на поверхности тела. Механическое напряжение может быть выражено в единицах силы, деленных на единицы площади.

Напряжение также является физической величиной, которая приводит электроны через проводник в замкнутую электрическую цепь, которая вызывает протекание электрического тока. В этом случае напряжение можно назвать напряжением или разностью потенциалов .

С другой стороны, поверхностное натяжение жидкости - это количество энергии, необходимое для уменьшения площади ее поверхности на единицу площади. Следовательно, жидкость оказывает сопротивление, увеличивая ее поверхность.

Как найти силу натяжения

Зная, что сила натяжения - это сила , с которой натягивается линия или струна, можно найти натяжение в ситуации статического типа, если известны углы линий. Например, если нагрузка находится на склоне, а линия, параллельная последнему, препятствует перемещению груза вниз, натяжение разрешается, зная, что сумма горизонтальных и вертикальных составляющих задействованных сил должна давать ноль.

Первый шаг для выполнения этого расчета - нарисовать склон и поместить на него блок массы M. Справа увеличивается наклон, и в одной точке он встречает стену, от которой линия проходит параллельно первому. и связать блок, удерживая его на месте и создавая натяжение T. Далее вы должны отождествить угол наклона с греческой буквой, которая может быть «альфа», а силу, которую он оказывает на блок, с буквой N, поскольку речь идет о нормальной силе .

Из блока вектор должен быть нарисован перпендикулярно наклону и вверх, чтобы представить нормальную силу, и один вниз (параллельно оси y ), чтобы отобразить силу тяжести. Затем вы начинаете с формул.

Чтобы найти силу, F = M используется. g , где g - это его постоянное ускорение (в случае силы тяжести это значение равно 9, 8 м / с ^ 2 ). Единицей, используемой для результата, является ньютон, который обозначается буквой N. В случае нормальной силы его необходимо разложить по вертикальным и горизонтальным векторам, используя угол, который он образует с осью x : для вычисления вектора вверх g равен косинусу угла, а для вектора в направлении слева, к лоно этого.

Наконец, левая составляющая нормальной силы должна быть приравнена к правой стороне напряжения T, наконец, разрешив напряжение.

  • Латинская Америка

    Латинская Америка (или Латинская Америка) - это понятие, которое относится к определенному набору стран, расположенных в Северной и Южной Америке. Разграничение этого набора может варьироваться, поскольку существуют различные критерии для конформации группы. В целом, Латинская Америка относится к американским странам, жители которых говорят на испанском или португальском языках. Таким образом, такие страны, как Ямайка или Багамские Острова, остаются вне группы. Однако в

    популярное определение

  • жизнь

    В латыни находится этимологическое происхождение слова жизнь. В частности, оно происходит от слова vita , которое, в свою очередь, происходит от греческого термина bios . Все они означают именно жизнь. Концепция жизни может быть определена с разных подходов. Наиболее распространенное понятие связано

    популярное определение

  • глаз

    Латинское слово ocŭlus происходит от глаз, это понятие обозначает орган, который обеспечивает зрение у животных и человека. Термин, во всяком случае, имеет другие значения. Как орган, глаз может обнаружить светимость и преобразовать ее изменения в нервный импульс, который интерпретируется мозгом. Хотя его де

    популярное определение

  • звуковая дорожка

    Первый необходимый шаг для того, чтобы раскрыть значение термина «саундтрек», - определить этимологическое происхождение двух слов, которые его формируют: Группа, которая, кажется, исходит от германского или франка в зависимости от того, что это значит. Сонора, которая происходит от латыни. В частности, это результат объединения глагола «sonare», который можно перевести как «создающий шум», и суффикса «-oro», который эквивалентен «полноте». Концепция группы

В механике под нитью понимается материальная система одного измерения, которая под действием приложенных сил может принять форму любой геометрической линии. Нить, не оказывающая сопротивления изгибу и кручению, называется идеальной или абсолютно гибпой нитью. Идеальная нить может быть растяжимой или нерастяжимой (крайняя абстракция). В дальнейшем, при отсутствии специального указания, под термином «гибкая нить» или просто «нить» будем понимать идеальную нерастяжимую или растяжимую нить.

При расчете нити на прочность, вычислении поверхностных сил, действующих на нить, а также в ряде других случаев необходимо учитывать поперечные размеры нити. Поэтому, говоря об одномерности нити, мы, конечно, имеем в виду, что поперечные размеры малы по сравнению с длиной и что они не нарушают перечисленных выше свойств идеальной нити.

Модель идеальной нити представляет некоторую абстракцию, однако во многих случаях пряжа и нитки (в процессе их изготовления), тросы, цепи и канаты вполне удовлетворительно отвечают этой модели. К этой же модели сводятся иногда плоские задачи механики некоторых лент и оболочек. Поэтому теория идеальной нити имеет большое прикладное значение.

Пусть нить под действием приложенных к ней сил приняла некоторую равновесную конфигурацию.

Положение каждой точки растянутой или нерастяжимой нити будем определять дуговой координатой 5, отсчитываемой от фиксированной точки нити, например точки А (рис. 1.1). Выделим на нити какой-нибудь ее отрезок длиной и массой . Плотностью растянутой нити в точке (иногда говорят линейной плотностью) называется предел отношения при условии, что точка стремится по нити к точке М:

В общем случае линейная плотность нити зависит от выбранной точки, т. е.

Если до растяжения плотность нити была одинакова во всех точках, то нить называется однородной, в противном случае - неоднородной. При данном определении линейной плотности нити ее неоднородность может быть вызвана неоднородностью материала или различной площадью поперечного сечения нити.

Пусть нить находится в равновесии под действием распределенных сил. Сделаем в точке нити мысленный разрез и рассмотрим силу с которой часть нити, расположенная в направлении положительного отсчета дуговой координаты (на рис. 1.2 правая часть нити) действует на другую (левую) часть нити. Очевидно, что эта сила, называемая натяжением нити, направлена по общей касательной к нити в точке (в § 1.2 это утверждение будет доказано). Естественно, что левая часть нити действует на правую часть с

такой же по модулю, но направленной в противоположную сторону силой, т. е. силой

В каждой точке нити имеется свое натяжение Поэтому при равновесии натяжение нити будет функцией дуговой координаты

Если ввести единичный касательный вектор то будем иметь

где модуль натяжения нити.

Нормальное напряжение нити о определяется, как обычно, равенством

Здесь площадь поперечного сечения нити.

Пусть до растяжения длина элемента нити была а после растяжения она сделалась равной Так как растяжение нити зависит от нормального напряжения, то отношение представляет некоторую функцию а

Задавая функцию мы получим соответствующий закон растяжения, например упругое, пластическое растяжение и т. п. Остановимся более подробно на упругом растяжении однородной нити по закону Гука, когда выполняется равенство

где - модуль упругости нити. Пользуясь равенством (1.3), получим

где а удельное относительное удлинение нити. Если нить нерастяжима, то

Заметим, что модуль упругости нити имеет размерность обычной силы: в Международной системе физических единиц в технической системе соответственно и Очевидно, что

где модуль упругости материала нити пли

Пусть диаметры нити до и после растяжения. Тогда относительное изменение диаметра нити определится равенством

Считая, что нить изотропна и что растяяение подчинено закону Гука, будем иметь

где коэффициент Пуассона. Пользуясь равенствами (1.4) и (1.6), найдем значение диаметра нити после растяжения

Как правило, величина ничтожно мала по сравнению с единицей. Поэтому изменением диаметра нити при ее растяжении обычно пренебрегают (но крайней мере для стальных тросов) и полагают, что для растянутого троса

Рассмотрим нить, на которую действует распределенные по ее длине силы, например силы тяжести, силы

давления ветра и т. п. Главный вектор сил, действующих на элемент нити обозначим через и будем считать, что он приложен к точке находящейся мелщу (рис. 1.3). Силой, отнесенной к единице длины нити, или интенсивностью распределенных сил называется выражение

Отсюда с точностью до членов высшего порядка относительно получим

Размерность силы, отнесенной к единице длины нити, отличается от размерности обычной силы: в системе она равна в технической системе -

Распределенные силы, действующие на нить, можно разбить на массовые и поверхностные. К первым относятся силы, зависящие от массы нити, например силы тяжести и силы инерции. Поверхностные силы, например силы давления набегающего потока, от массы нити не зависят (они могут зависеть от площади продольного диаметрального сечения нити, т. е. от ее диаметра, скорости набегающего потока и других факторов).

Остановимся более подробно на массовых силах. Если через обозначить силу, отнесенную к единице длины, то сила отнесенная к единице массы нити, определится равенством

В частности, для силы тяжести будем иметь

где ускорение силы тяжести, сила тяжести, отнесенная к единице длины нити. Для однородной нерастянутой нити сила численно равна весу единицы длины пити.

Так как масса нити при растяжении не изменяется, то будем иметь

Отсюда, пользуясь равенством (1.3), получим

Таким образом, массовые силы, отнесенные к единице длины растяжимой нити, можно представить равенством

Поверхностные силы, отнесенные к единице длины, обычно пропорциональны диаметру нити

где коэффициент пропорциональности X зависит от разных факторов (например, от скорости потока, плотности среды и т. п.). Как уже отмечалось, в подавляющем большинстве случаев изменением диаметра растяжимой нити можно пренебречь, и тогда число в последней формуле следует считать постоянным. Для растяжимых нитей, модуль упругости которых очень мал, возможен случай, когда изменение диаметра нити нужно учесть. Тогда следует воспользоваться формулой (1.8).

В общем случае сила отнесенная к единице длины нити, зависит от дуговой координаты точки положения последней в пространстве, направления касательной или нормали к нити и натяжения Действительно, плотность и, следовательно, сила тяжести неоднородной нити зависят от положения точки на нити, т. е. от ее дуговой координаты Сила гидростатического давления направлена по нормали к нити и модуль ее пропорционален высоте уровня, т. е. эта сила зависит от координат точки. Из формулы (1.15) следует, что в аналитическое выражение силы отнесенной к единице длины растянутой нити, явно входит модуль

натяжения Поэтому, если рассматривать пить в прямоугольной системе координат то в общем случае будем иметьРис. 1.4.

Если же концы нити закреплены, то эти равенства могут служить для определения реакций точек закрепления. Чаще всего встречаются нити с двумя закрепленными концами, реже - нити с одним закрепленным и одним свободным концами, причем задается или можно определить из дополнительной информации значение силы, приложенной к свободному концу (положение его, как правило, неизвестно). Встречаются и более сложные граничные условия. Многие из них будут рассмотрены при изучении конкретных задач. Кроме непосредственных условий на границах, должны быть заданы геометрические (один или несколько) параметры, например длина нити, стрела провисания и т. п. Эти элементы мы будем условно относить также к граничным условиям.

Теперь можно сформулировать основную задачу о равновесии идеальной нити: даны действующие на нить силы (распределенные и сосредоточенные), закон растяжения нити и найдены в необходимом числе граничные условия. Требуется определить форму равновесия нити, натяжение ее в любой точке и изменение длины (для растяжимых нитей).

В заключение отметим, что при решении конкретных задач основные трудности возникают, как правило, при интегрировании дифференциальных уравнений равновесия нити. Однако следует иметь в виду, что во многих случаях уравнения равновесия нити интегрируются сравнительно легко, а наибольшие затруднения появляются при построении решения, удовлетворяющего граничным условиям.


Похожие статьи

© 2024 myneato.ru. Мир космоса. Лунный календарь. Осваиваем космос. Солнечная система. Вселенная.