Кто создал простые числа. Простое число

Простые числа - это целые числа больше единицы, которые не могут быть представлены как произведение двух меньших чисел. Таким образом, 6 - это не простое число, так как оно может быть представлено как произведение 2×3, а 5 - это простое число, потому что единственный способ представить его как произведение двух чисел - это 1×5 или 5×1. Если у вас есть несколько монет, но вы не можете расположить их все в форме прямоугольника, а можете только выстроить их в прямую линию, ваше число монет - это простое число.

Бесконечное число простых чисел

Некоторые считают, что простые числа не стоят глубокого изучения, но они имеют фундаментальное значение для математики. Каждое число может быть представлено уникальным способом в виде простых чисел, умноженных друг на друга. Это значит, что простые числа - это «атомы умножения», маленькие частички, из которых может быть построено что-то большое.

Так как простые числа - это строительные элементы целых чисел, которые получаются с помощью умножения, многие проблемы целых чисел могут быть сведены к проблемам простых чисел. Подобным образом некоторые задачи в химии могут быть решены с помощью атомного состава химических элементов, вовлеченных в систему. Таким образом, если бы существовало конечное число простых чисел, можно было бы просто проверить одно за другим на компьютере. Однако оказывается, что существует бесконечное множество простых чисел, которые на данный момент плохо понимают математики.

Греческий математик Евклид доказал, что существует бесконечное множество простых чисел. Если у вас есть определенное количество простых чисел, например p1,… pn, вы можете рассмотреть число p1×…×pn + 1, которое на единицу больше, чем все простые числа, умноженные друг на друга. Это число не может быть произведением любых чисел p1,… pn из вашего списка, но оно точно больше, чем 1. Так что все простые множители должны быть простыми числами, которых нет в вашем списке. Добавляя новые простые числа в ваш список и повторяя те же действия, вы всегда можете найти по крайней мере одно новое простое число. Поэтому должно существовать бесконечное множество простых чисел.

История изучений

Никто точно не знает, в каком обществе стали впервые рассматривать простые числа. Их изучают так давно, что у ученых нет записей тех времен. Есть предположения, что некоторые ранние цивилизации имели какое-то понимание простых чисел, но первым реальным доказательством этого являются египетские записи на папирусах, сделанные более 3500 лет назад.

Древние греки, скорее всего, были первыми, кто изучал простые числа как предмет научного интереса, и они считали, что простые числа важны для чисто абстрактной математики. Теорему Евклида по-прежнему изучают в школах, несмотря на то что ей уже больше 2000 лет.

После греков серьезное внимание простым числам снова уделили в XVII веке. С тех пор многие известные математики внесли важный вклад в наше понимание простых чисел. Пьер де Ферма совершил множество открытий и известен благодаря Великой теореме Ферма, 350-летней проблеме, связанной с простыми числами и решенной Эндрю Уайлсом в 1994 году. Леонард Эйлер доказал много теорем в XVIII веке, а в XIX веке большой прорыв был сделан благодаря Карлу Фридриху Гауссу, Пафнутию Чебышёву и Бернхарду Риману, особенно в отношении распределения простых чисел. Кульминацией всего этого стала до сих пор не решенная гипотеза Римана, которую часто называют важнейшей нерешенной задачей всей математики. Гипотеза Римана позволяет очень точно предсказать появление простых чисел, а также отчасти объясняет, почему они так трудно даются математикам.

Практические применения

У простых чисел существует огромное количество применений как в области математики, так и за ее пределами. Простые числа в наши дни используются практически ежедневно, хотя чаще всего люди об этом не подозревают. Простые числа представляют такое значение для ученых, поскольку они являются атомами умножения. Множество абстрактных проблем, касающихся умножения, можно было бы решить, если бы люди знали больше о простых числах. Математики часто разбивают одну проблему на несколько маленьких, и простые числа могли бы помочь в этом, если бы понимали их лучше.

Вне математики основные способы применения простых чисел связаны с компьютерами. Компьютеры хранят все данные в виде последовательности нулей и единиц, которая может быть выражена целым числом. Многие компьютерные программы перемножают числа, привязанные к данным. Это означает, что под самой поверхностью лежат простые числа. Когда человек совершает любые онлайн-покупки, он пользуется тем, что есть способы умножения чисел, которые сложно расшифровать хакеру, но легко покупателю. Это работает за счет того, что простые числа не имеют особенных характеристик - в противном случае злоумышленник мог бы получить данные банковской карты.

Поиск новых простых чисел

Один из способов нахождения простых чисел - это компьютерный поиск. Путем многократной проверки того, является ли число множителем 2, 3, 4 и так далее, можно легко определить, простое ли оно. Если оно не является множителем любого меньшего числа, оно простое. В действительности это очень трудоемкий способ выяснения того, является ли число простым. Однако существуют более эффективные пути это определить. Эффективность этих алгоритмов для каждого числа является результатом теоретического прорыва 2002 года.

Простых чисел достаточно много, поэтому если взять большое число и прибавить к нему единицу, то можно наткнуться на простое число. В действительности многие компьютерные программы полагаются на то, что простые числа не слишком трудно найти. Это значит, что, если вы наугад выберете число из 100 знаков, ваш компьютер найдет большее простое число за несколько секунд. Поскольку 100-значных простых чисел больше, чем атомов во Вселенной, то вполне вероятно, что никто не будет знать наверняка, что это число простое.

Как правило, математики не ищут отдельных простых чисел на компьютере, однако они очень заинтересованы в простых числах с особыми свойствами. Есть две известные проблемы: существует ли бесконечное количество простых чисел, которые на один больше, чем квадрат (например, это имеет значение в теории групп), и существует ли бесконечное количество пар простых чисел, отличающихся друг от друга на 2.

Тайны простых чисел

Несмотря на то, что простые числа изучаются уже более трех тысячелетий и имеют простое описание, о простых числах до сих пор известно на удивление мало. Например, математики знают, что единственной парой простых чисел, отличающихся на единицу, являются 2 и 3. Однако неизвестно, существует ли бесконечное количество пар простых чисел, отличающихся на 2. Предполагается, что существует, но это пока не доказано. Это проблема, которую можно объяснить ребенку школьного возраста, однако величайшие математические умы ломают над ней голову уже более 100 лет.

Многие из наиболее интересных вопросов о простых числах как с практической, так и с теоретической точки зрения заключаются в том, какое количество простых чисел имеет то или иное свойство. Ответ на самый простой вопрос - сколько есть простых чисел определенного размера - теоретически можно получить, решив гипотезу Римана. Дополнительный стимул доказать гипотезу Римана - приз размером в один миллион долларов, предложенный математическим институтом Клэя, равно как и почетное место среди самых выдающихся математиков всех времен.

Сейчас существуют неплохие способы предположить, каким будет правильный ответ на многие из этих вопросов. На данный момент догадки математиков проходят все численные эксперименты, и есть теоретические основания, чтобы на них полагаться. Однако для чистой математики и работы компьютерных алгоритмов чрезвычайно важно, чтобы эти догадки действительно были верными. Математики могут быть полностью удовлетворены, только имея неоспоримое доказательство.

Самым серьезным вызовом для практического применения является сложность нахождения всех простых множителей числа. Если взять число 15, можно быстро определить, что 15=5×3. Но если взять 1000-значное число, вычисление всех его простых множителей займет больше миллиарда лет даже у самого мощного суперкомпьютера в мире. Интернет-безопасность во многом зависит от сложности таких вычислений, потому для безопасности коммуникации важно знать, что кто-то не может просто взять и придумать быстрый способ найти простые множители.

Современные исследования

Несмотря на то, что эта тема стара и затрагивала многих известных математиков на протяжении всей истории, она по-прежнему актуальна. Ученые не знают, существует ли бесконечное количество пар таких простых чисел, как 3 и 5, отличающихся на 2. Это известная нерешенная проблема. Математик Итан Чжан сделал большой прорыв в отношении этой проблемы. В начале 2013 года ученые не знали, существует ли бесконечное количество пар простых чисел в пределах 1 квинтиллиона друг от друга или для любого числа, помимо 1 квинтиллиона, независимо от его величины. Благодаря теоретическим наработкам, основанным на работе Чжана, математики знают, что существует бесконечное количество простых чисел, отличающихся друг от друга не больше чем на 246. Число 246 гораздо больше двух, однако оно заметно меньше бесконечности.

Вместо того чтобы искать простые числа, находящиеся рядом, можно искать те из них, что находятся далеко друг от друга на числовой оси. Заметный теоретический прорыв в этой проблеме был сделан впервые за более чем 75 лет в начале 2014 года, когда исследователи из Математического института Оксфорда решили одну из проблем Эрдёша. Другие два интересных решения проблем Эрдёша, связанных с простыми числами, были сделаны Бобом Хафом и Теренсом Тао, чья работа была основана на еще одном прорыве, сделанном Каисой Матомаки и Максимом Раджвиллом в 2014 году. Харальд Гельфготт с Дэвидом Платтом наконец доказали слабую гипотезу Гольдбаха, доведя до кульминации сто лет различных находок. Математики привыкли к тому, что нужно ждать десять лет до достижения серьезного результата в области простых чисел, однако на этот раз получили полдюжины таких результатов за последние три года.

Простые числа в будущем

Сейчас невозможно сказать, как простые числа будут использоваться в будущем. Чистая математика (например, изучение простых чисел) неоднократно находила способы применения, которые могли показаться совершенно невероятными, когда теория впервые разрабатывалась. Снова и снова идеи, воспринимавшиеся как чудной академический интерес, непригодный в реальном мире, оказывались на удивление полезными для науки и техники. Годфри Харольд Харди, известный математик начала XX столетия, утверждал, что простые числа не имеют реального применения. Сорок лет спустя был открыт потенциал простых чисел для компьютерной коммуникации, и сейчас они жизненно необходимы для повседневного использования интернета.

Поскольку простые числа лежат в основе проблем, касающихся целых чисел, а целые числа постоянно встречаются в реальной жизни, простым числам найдется повсеместное применение в мире будущего. Это особенно актуально, учитывая, как интернет проникает в жизнь, а технологии и компьютеры играют большую роль, чем когда-либо раньше.

Существует мнение, что определенные аспекты теории чисел и простых чисел выходят далеко за рамки науки и компьютеров. В музыке простые числа объясняют, почему некоторые сложные ритмические рисунки долго повторяются. Это порой используется в современной классической музыке для достижения специфического звукового эффекта. Последовательность Фибоначчи постоянно встречается в природе, и есть гипотеза о том, что цикады эволюционировали таким образом, чтобы находиться в спячке в течение простого числа лет для получения эволюционного преимущества. Также предполагается, что передача простых чисел по радиоволнам была бы лучшим способом для попытки установления связи с инопланетными формами жизни, поскольку простые числа абсолютно независимы от любого представления о языке, но при этом достаточно сложны, чтобы их нельзя было спутать с результатом некоего в чистом виде физического природного процесса.

МОУ «Частоозерская средняя общеобразовательная школа»

Исследовательская работа по теме:

«Числа правят миром!»

Работу выполнила:

ученица 6а класса.

Руководитель: ,

учитель математики.

с. Частоозерье.

I. Введение. -3стр.

II. Основная часть. -4стр.

· Математика у древних греков. - 4стр.

· Пифагор Самосский. -6стр.

· Пифагор и числа. -8стр.

2. Числа простые и составные. -10стр.

3. Проблема Гольдбаха. -12стр.

4. Признаки делимости. -13стр.

5. Любопытные свойства натуральных чисел.-15стр.

6. Числовые фокусы. -18стр.

III. Заключение. -22стр.

IV. Список литературы. -23стр.

I. Введение.

Актуальность:

Изучая на уроках математики тему «Делимость чисел», учитель предложил подготовить сообщение о истории открытия простых и составных чисел. При подготовке сообщения, меня заинтересовали слова Пифагора «Числа правят миром!»

Возникли вопросы:

· Когда возникла наука о числах?

· Кто внес вклад в развитие науки о числах?

· Значение чисел в математике?

Решила подробно изучить и обобщить материал о числах и их свойствах.

Цель исследования: изучить простые и составные числа и показать их роль в математике.

Объект исследования: простые и составные числа.

Гипотеза: Если, по словам Пифагора «Числа правят миром,

то какова их роль в математике.

Задачи исследования:

I. Собрать и обобщить всевозможную информацию о простых и составных числах.

II. Показать значение чисел в математике.

III. Показать любопытные свойства натуральных чисел.

Методы исследования:

· Теоретический анализ литературы.

· Метод систематизации и обработки данных.

II. Основная часть.

1. История возникновения науки о числах.

· Математика у древних греков.

И в Египте, и в Вавилоне числами пользовались в основном для решения практических задач.

Положение изменилось, когда математикой занялись греки. В их руках математика из ремесла стала наукой.

Греческие племена стали селиться на северных и восточных берегах Средиземного моря около четырёх тысяч лет назад.

Большая часть греков осела на балканском полуострове - там, где сейчас государство Греция. Остальные расселились по островам Средиземного моря и по берегу Малой Азии.

Греки были отличными моряками. Их лёгкие остроносые корабли во всех направлениях бороздили средиземное море. Они везли посуду и украшения из Вавилона, бронзовое оружие из Египта, шкуры зверей и хлеб с берегов Чёрного моря. И конечно, как и у других народов, вместе с товарами корабли привозили в Грецию знания. Но греки не просто

учились у других народов. Очень скоро они обогнали своих учителей.

Греческие мастера строили удивительной красоты дворцы и храмы, которые потом тысячи лет служили образцом для архитекторов всех стран.

Греческие скульпторы создавали из мрамора чудесные статуи. А с греческих учёных началась не только « настоящая» математика, но и очень многие другие науки, которые мы изучаем в школе.

А знаете, почему греки обогнали в математике все другие народы? Потому, что они хорошо умели спорить.

Чем же споры могут помочь науке?

В древние времена Греция состояла из многих маленьких государств. Чуть ли не каждый город с окрестными деревнями был отдельным государством. Каждый раз, когда приходилось решать какой-нибудь важный государственный вопрос, горожане собирались на площадь, обсуждали его. Спорили о том, как сделать лучше, а потом голосовали. Понятно, что они были хорошими спорщиками: на таких собраниях приходилось опровергать противников, рассуждать, доказывать свою правоту. Древние греки считали, что спор помогает найти самое лучшие. Самое правильное решение. Они даже придумывали такое изречение: « В споре рождается истина».

И в науке греки стали поступать так же. Как на народном собрании. Они не просто заучивали правила, а доискивались причины: почему правильно делать так, а не иначе. Каждое правило греческие математики старались объяснить, доказать, что оно не верное. Они спорили друг с другом. Рассуждали, старались найти в рассуждениях ошибки.

Докажут одно правило - рассуждения ведут к другому, более сложному, потом - к третьему, к четвёртому. Из правил складывались законы. А из законов - наука математика.

Едва родившись, греческая математика сразу семимильными шагами пошла вперёд. Ей помогали чудесные сапоги- скороходы, которых раньше у других народов не было. Они назывались « рассуждение» и « доказательство».

· Пифагор Самосский.

О числах первым начал рассуждать грек Пифагор, который родился на острове Самосее в VI веке да нашей эры.

Поэтому его часто называют Пифагором Самосским. Много легенд рассказывали греки об этом мыслителе.

Пифагор рано проявил способности к наукам, и отец Мнесарх отвёз его в Сирию, в Тир, чтобы там его учили халдейские мудрецы. Она узнает о таинствах египетских жрецов. Загоревшись желанием войти в их круг и стать посвящённым, Пифагор начинает готовиться к путешествию в Египет. Год он проводит в Финикии, в школе жрецов. Затем побывает в Египет, в Гелиополис. Но местные жрецы были неприветливы.

проявив настойчивость и выдержав исключительно трудные вступительные испытания, Пифагор добивается своего - его принимают в касту.21 год пробыл он в Египте, в совершенстве изучил все виды египетского письма, прочитал множество папирусов. Факты, известные египтянам в математике, наталкивают его на собственные математические открытия.

Мудрец говорил: « В мире есть при вещи, к которым нужно стремиться. Это, во-первых, прекрасное и славное, во- вторых, полезное для жизни, в-третьих, доставляющее наслаждение. Однако наслаждение бывает двоякого рода: одно, утоляющее роскошеством наше чревоугодие, гибельно; другое – праведное и необходимое для жизни».

Центральное место в философии воспитанников и приверженцев Пифагора занимали числа:

« Где нет числа и меры - там хаос и химеры»,

« Самое мудрое - это число»,

« Числа управляют миром».

Поэтому многие считают Пифагора отцом нумерации - сложной, окутанной тайной науки, описывающие в нём события, раскрывающей прошлое и будущее, предсказывающей судьбы людей.

· Пифагор и числа.

Числа Древними греками, а вместе с ними Пифагором и пифагорейцами, мыслились зримо в виде камешков, разложенных на песке или на счётной доске - абаке.

Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались, так возникли числа, сегодня именуемые фигурными: линейные числа (т. е. простые числа) – числа, которые делятся на единицу и на само себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию

https://pandia.ru/text/79/542/images/image006_30.jpg" width="312" height="85 src=">

телесные числа, выражаемые произведением трёх сомножителей

https://pandia.ru/text/79/542/images/image008_20.jpg" width="446" height="164 src=">

квадратные числа:

https://pandia.ru/text/79/542/images/image010_15.jpg" width="323" height="150 src=">

и. т.д. именно от фигурных чисел пошло выражение « Возвести число в квадрат или куб ».

Пифагор не ограничился плоскими фигурами. Из точек он стал складывать пирамиды, кубы и другие тела и изучать пирамидальные, кубические и иные числа (см. рис.1). К слову сказать, названием куб числа мы тоже пользуемся и сегодня.

Но числами, получавшимися из различных фигур, Пифагор не удовлетворился. Ведь он провозгласил, что числа правят миром. Поэтому ему пришлось придумывать, как с помощью чисел изображать такие понятия, как справедливость, совершенство, дружба.

Чтобы изобразить совершенство, Пифагор принялся за делители чисел (при этом делитель 1 он брал, а само число не брал). Все делители числа он складывал, и если сумма оказывалась меньше числа, оно объявлялось недостаточным, а если больше – избыточным. И только в случае, когда сумма в точности равнялась числу, его объявляли совершенным. Похожим образом изображали числа дружбы – два числа называли дружественными, если каждое из них равнялось сумме делителей другого числа. Например, число 6 (6=1+2+3) –совершенно, число 28 (1+2+4+7+17) – совершенно. Следующие совершенные числа – 496, 8128, .

2.Числа простые и составные.

О дружественных или совершенных числах современная математика вспоминает с улыбкой как о детском увлечении.

А введенные Пифагором понятия простого и составного чисел являются до сих пор предметом серьезных исследований, за которые математики получают высокие научные награды.

Из опыта вычислений люди знали, что каждое число является либо простым, либо произведением нескольких простых чисел. Но они не умели этого доказывать. Пифагор или кто-то из его последователей нашел доказательство этого утверждения.

Теперь легко объяснить роль простых чисел в математике: они являются теми кирпичиками, из которых с помощью умножения строят остальные числа.

Открытие закономерностей в ряду чисел - очень приятное событие для математиков: ведь эти закономерности можно использовать для построения гипотез, для проверки доказательств и формул. Одно из занимающих математиков свойств простых чисел состоит в том, что они отказываются подчиняться хоть какой-нибудь закономерности.

Единственный способ определить, простое ли число 100 895 598 169, - воспользоваться довольно трудоемким « решетом Эратосфена».

На таблице представлен один из вариантов этого решета.

В этой таблице все простые числа, меньшие 48, обведены кружками. Найдены они так: 1 имеет единственный делитель - себя, поэтому 1 не считается простым числом. 2 – наименьшее (и единственное чётное) простое число. Все другие чётные числа делятся на 2,а значит имеют, по крайней мере три делителя; поэтому они не простые и могут быть вычеркнуты. Следующее невычеркнутое число – 3; оно имеет ровно два делителя, поэтому она простое. Все остальные числа, кратные трём (т. е. такие, которые можно разделить на 3 без остатка), вычеркиваются. Теперь первое невычеркнутое число - 5; оно простое, а все его кратные можно вычеркнуть.

Продолжая вычеркивать кратные, можно отсеять все простые числа, меньше 48.

3. Проблема Гольдбаха.

Из простых чисел можно получить любое число с помощью умножения. А что будет, если складывать простые числа?

Живший в России в XVIII веке математик Гольдбах решил складывать нечетные простые числа лишь попарно. Он обнаружил удивительную вещь: каждый раз ему удавалось представить четное число в виде суммы двух простых чисел. (как это было во времена Гольдбаха, мы считаем 1 простым числом).

4 = 1 +3, 6 = 3 + 3, 8 = 3 + 5. и т. д.

https://pandia.ru/text/79/542/images/image016_5.jpg" width="156" height="191 src=">

О своем наблюдении Гольдбах написал великому математику

XVIII века Леонарду Эйлеру, который был членом Петербургской Академии наук. Проверив еще много четных чисел, Эйлер убедился, что все они являются суммами двух простых чисел. Но четных чисел бесконечно много. Поэтому вычисления Эйлера давали лишь надежду на то, что свойством, которое заметил Гольдбах, обладают все числа. Однако попытки доказать, что это всегда будет так, ни к чему не привели.

Двести лет размышляли математики над проблемой Гольдбаха. И только русскому ученому Ивану Матвеевичу Виноградову удалось сделать решающий шаг. Он установил, что любое достаточно большое натуральное число является

суммой трех простых чисел. Но число, начиная с которого верно утверждение Виноградова, невообразимо велико.

4. Признаки делимости.

489566: 11 = ?

Чтобы узнать, каково данное число – простое или составное, не всегда нужно заглядывать в таблицу простых чисел. Часто для этого достаточно воспользоваться признаками делимости.

· Признак делимости на 2.

Если запись натурального числа оканчивается четной цифрой, то это число четно и делится на 2 без остатка.

· Признак делимости на 3.

Если сумма цифр числа делится на 3, то и число делится на 3.

· Признак делимости на 4.

Натуральное число, содержащее не менее трех цифр, делится на 4, если делится на 4 число, образованное двумя последними цифрами этого числа.

· Признак делимости на 5.

Если запись натурального числа оканчивается цифрой 0 или 5, то это число делится на 5 без остатка.

· Признак делимости на 7 (на13).

Натуральное число делится на 7 (на 13), если алгебраическая сумма чисел, образующих грани по три цифры(начиная с цифры единиц), взятых со знаком «+» для нечетных граней и со знаком «минус» для четных граней, делилась на, составим алгебраическую сумму граней, начиная с последней грани и чередуя знаки +и -: + 254 = 679. Число 679 делится на 7, значит и данное число делится на 7.

· Признак делимости на 8.

Натуральное число, содержащее не менее четырех цифр, делится на 8, если делится на 8 число, образованное тремя последними цифрами.

· Признак делимости на 9.

Если сумма цифр числа делится на 9, то и само число делится на 9.

· Признак делимости на 10.

Если натуральное число оканчивается 0, то оно делится на 10.

· Признак делимости 11.

Натуральное число делится на 11, если алгебраическая сумма его цифр, взятых со знаком «плюс», если цифры находятся на нечетных местах (начиная с цифры единиц), и взятых со знаком «минус», если цифры находятся на четных местах, делится на, 7 – 1 + 5 = 11, делится на 11).

· Признак делимости на 25.

Натуральное число, содержащее не менее трех цифр, делится на 25, если делится на 25 число, образованное двумя последними цифрами этого числа.

· Признак делимости на 125.

Натуральное число, содержащее не менее четырех чисел, делится на 125, если на 125 делится число, образованное тремя последними цифрами этого числа.

5. Любопытные свойства натуральных чисел.

У натуральных чисел есть много любопытных свойств, которые обнаруживаются при выполнении над ними арифметических действий. Но заметить эти свойства всё же бывает легче, чем доказать их. Приведём несколько таких свойств.

1) .Возьмём наугад какое-нибудь натуральное число, например 6, и запишем все его делители: 1, 2, 3,6. Для каждого из этих чисел запишем, сколько у него делителей. Так как у 1 только один делитель (само это число), у 2 и 3 по два делителя, а у 6 имеем 4 делителя, то получаем числа 1, 2, 2, 4. У них есть замечательная особенность: если возвести эти числа в куб и сложить ответы, получится в точности такая же сумма которую мы получили бы, сначала сложив эти числа, а потом возведя сумму в квадрат, иными словами,

https://pandia.ru/text/79/542/images/image019_3.jpg" width="554" height="140 src=">

Подсчёты показывают, что и слева и справа ответ один и тот же, а именно324.

Какое бы число мы ни взяли, подмеченное нами свойство будет выполняться. Вот только доказать это довольно сложно.

2) . Возьмём любое четырёхзначное число, например 2519, и расставим его цифры сначала в порядке убывания, а потом в порядке возрастания: и Из большего числа вычтем меньшее: =8262. С полученным числом проделаем то же самое: 86=6354. И ещё один такой же шаг: 65= 3087. Далее, = 8352, =6174. Вам не надоело вычитать? Сделаем всё же ещё один шаг: =6174. Снова получилось 6174.

Вот теперь мы, как говорят программисты, «зациклились»: сколько бы раз мы теперь не вычитали, ничего кроме 6174, не получим. Может быть, дело в том, что так было подобрано исходное число 2519? оказывается, оно здесь не при чём: какое бы четырёхзначное число мы ни взяли, после не более чем семи шагов обязательно получится это же число 6174.

3) . Нарисуем несколько окружностей с общим центром и на внутренней окружности запишем любые четыре натуральных числа. Для каждой пары соседних чисел вычтем из большего меньшее и результат запишем на следующей окружности. Оказывается, если повторить это достаточно много раз, на одной их окружностей все числа окажутся равными нулю, а поэтому и дальше ничего, кроме нулей, получаться не будет. На рисунке показано это для случая, когда на внутренней окружности написаны числа 25, 17, 55, 47.

4) . Возьмём любое число (хоть тысячезначное), записанное в десятичной системе счисления. Возведём все его цифры в квадрат и сложим. С суммой проделаем то же самое. Оказывается, после нескольких шагов мы получим либо число 1, после чего иных чисел не будет, либо 4, после чего мы имеем числа 4, 16, 37, 58, 89, 145, 42, 20 и снова получим 4. Значит, цикла не избежать и здесь.

5. Составим такую бесконечную таблицу. В первом столбце напишем числа 4, 7, 10, 13, 16, … (каждое следующее на 3 больше предыдущего). От числа 4 проведём вправо строку, увеличивая на каждом шагу числа на 3. От числа 7 поведём строку, увеличивая числа на 5, от числа 10- на 7 и т. д. Получается такая таблица:

Если взять любое число из этой таблицы, умножить его на 2 и к произведению прибавить 1, то всегда получится составное число. Если проделать то же самое с числом, не входящим в эту таблицу, то получаем простое число. Например, возьмём из таблицы число 45. Число 2*45+1=91 составное, оно равно 7*13. А числа 14 в таблице нет, и число 2*14+1=29 простое.

Этот замечательный способ отличать простые числа от составных придумал в 1934 году индийский студент Сундарам. Наблюдения за числами позволяют открывать и другие замечательные утверждения. Свойства мира чисел поистине неисчерпаемы.

Числовые фокусы.

https://pandia.ru/text/79/542/images/image022_2.jpg" width="226" height="71">

Ведь если рядом с трехзначным числом ещё раз написать это же число, то первоначальное число умножится на 1001 (например, 289 289= 289https://pandia.ru/text/79/542/images/image024_3.jpg" width="304" height="74">

А четырёхзначные числа повторяют один раз и делят на 73 137. Разгадка в равенстве

https://pandia.ru/text/79/542/images/image026_6.jpg" width="615" height="40 src=">

Заметим, что кубы чисел 0, 1, 4, 5, 6 и 9 оканчиваются той же цифрой (например, https://pandia.ru/text/79/542/images/image028_4.jpg" width="24" height="24 src=">.jpg" width="389" height="33">

Кроме этого, надо запомнить следующую таблицу, показывающую, с чего начинаются пятые степени следующих чисел:

https://pandia.ru/text/79/542/images/image032_2.jpg" width="200 height=28" height="28">Значит, надо приписать к первоначально написанному на доске пятизначному числу впереди цифру 3, а из полученного числа отнять 3.

Чтобы зрители не разгадали фокуса, можно уменьшить первую цифру какого-нибудь из чисел на несколько единиц и на столько же единиц уменьшить соответствующую цифру в сумме. Например, на рисунке уменьшена, на 2 первая цифра в третьем слагаемом и на столько же соответствующая цифра в сумме.

Заключение.

Собрав и обобщив материал о простых и составных числах, пришла к выводу:

1. Учение о числах уходит в древние времена и имеет богатую историю.

2. Велика роль простых чисел в математике: они являются теми кирпичиками, из которых с помощью умножения строятся все остальные числа.

3. Натуральные числа имеют много любопытных свойств. Свойства мира чисел поистине неисчерпаемы.

4. Подготовленный мною материал можно смело использовать на уроках математики и занятиях математического кружка. Этот материал поможет более глубже подготовиться к различным видам олимпиад.

Отдел образования и молодежной политики администрации

Яльчикского района Чувашской Республики

Проект
Простые числа…

Так ли проста их история?

Выполнила ученица 7 класса МОУ «Новошимкусская СОШ Яльчикского района Чувашской Республики» Ефимова Марина

Руководитель: учитель математики I категории МОУ «Новошимкусская СОШ Яльчикского района Чувашской Республики» Кириллова С.М.

с.Новые Шимкусы - 2007



  1. Определение простых чисел 3

  2. Заслуги Эйлера 3

  3. Основная теорема арифметики 4

  4. Простые числа Мерсена 4

  5. Простые числа Ферма 5

  6. Решето Эратосфена 5

  7. Открытие П.Л.Чебышева 6

  8. Проблема Гольдбаха 7

  9. И.М.Виноградов 8

  10. Заключение 8

  11. Литература 10
Определение простых чисел

Интерес к изучению простых чисел возник у людей в глубокой древности. И вызван он был не только практи­ческой необходимостью. Привлекала их необычайная ма­гическая сила. Числа, которыми можно выразить коли­чество любых предметов. Неожиданные и в то же время естественные свойства натуральных чисел, обнаруженные древними математиками, удивляли их своей замечатель­ной красотой и вдохновляли на новые исследования.

Должно быть, одним из первых свойств чисел, откры­тых человеком, было то, что некоторые из них могут быть разложены на два или более множителей, например,

6=2*3, 9=3*3, 30=2*15=3*10, в то время как другие, например 3, 7, 13, 37, не могут быть разложены подобным образом.

Когда число с = а b является произведением двух чисел а и b, то числа а и b называются множителями или дели­телями числа с. Каждое число может быть представлено в виде произведения двух сомножителей. Например, с = 1 *с = с*1.

Простым называется число, которое делится только само на себя и на единицу.

Единица, имеющая только один делитель, к простым числам не относится. Не относится она и к составным числам. Единица занимает особое положение в числовом ряду. Пифагорейцы учили, что единица - матерь всех чисел, дух, из которого происходит весь видимый мир, она есть разум, добро, гармония.

В Казанском университете профессор Никольский с помощью единицы ухитрился доказать существование Бога. Он говорил: «Как не может быть числа без едини­цы, так и Вселенная без единого Владыки существовать не может».

Единица и в самом деле - число уникальное по свой­ствам: она делится только сама на себя, но любое другое число на нее делится без остатка, любая ее степень рав­на тому же самому числу - единице!

После деления на нее ни одно число не изменяется, а если и поделить любое число на самое себя, получится опять же единица! Не удивительно ли это? Поразмыслив над этим, Эйлер заявил: «Нужно исключить единицу из последовательности простых чисел, она не является ни простым, ни составным».

Это было уже существенно важное упорядочивание в темном и сложном вопросе о простых числах.

Заслуги Эйлера

Леонард Эйлер

(1707-1783)

У Эйлера учились все - ив Западной Европе, и в Рос­сии. Диапазон его творчества широк: дифференциальное и интегральное исчисления, алгебра, механика, диоптри­ка, артиллерия, морская наука, теория движения планет и Луны, теория музыки - всего не перечислить. Во всей этой научной мозаике находится и теория чисел. Эйлер отдал ей немало сил и немалого добился. Он, как и многие его предшественники, искал магическую формулу, которая позволяла бы выделить простые числа из бесконечного множества чисел натурального ряда, т. е. из всех чисел, какие можно себе представить. Эйлер написал бо­лее ста сочинений по теории чисел.


...Доказано, например, что число простых чисел неограниче­но, т. е.: 1) нет самого большого простого числа; 2) нет последне­го простого числа, после которо­го все числа были бы составными. Первое доказательство этого положения принадлежит ученым древней Греции (V-Ш вв. до н. э.), второе доказательство - Эйлеру (1708-1783).

Основная теорема арифметики

Всякое натуральное число, отличное от 1, либо явля­ется простым, либо может быть представлено в виде произведения простых чисел, причем однозначно, если не обращать внимания на порядок следования множителей.

Доказательство. Возьмем натуральное число п≠ 1. Если n - простое, то это тот случай, о котором сказано в заключении теоремы. Теперь предположим, что n - со­ставное. Тогда оно представлено в виде произведения п = а b , где натуральные числа а и b меньше n. Опять либо a и b - простые, тогда все доказано, либо хотя бы одно из них составное, т. е. составлено из меньших множителей и так далее; в конце концов мы получим разложение на про­стые множители.

Если число n не делится ни на одно простое, не пре­восходящее √ n , то оно является простым.

Доказательство. Предположим противное, пусть n - составное и п = аЬ, где 1 ≤b и р - простой делитель числа а, значит, и числа n. По усло­вию п не делится ни на одно простое, не превосходящее n . Следовательно, р >√ n . Но тогда а >√ n и n а ≤ b,

откуда п = а b = √ n n = п; пришли к противоречию, предположение было неверным, теорема доказана.

Пример 1. Если с = 91, то с = 9, ... проверим про­стые числа 2, 3, 5, 7. Находим, что 91 = 7 13.

Пример 2. Если с = 1973, то находим c = 1973 =44, ...

так как ни одно простое число до 43 не делит с, то это число является простым.


Пример 3. Найдите простое число, следующее за про­стым числом 1973. Ответ: 1979.

Простые числа Мерсена

В течение нескольких столетий шла погоня за просты­ми числами. Многие математики боролись за честь стать открывателями самого большого из известных простых чисел.

Простые числа Мерсена являются простыми числами специального вида M p = 2 p - 1

где р - другое простое число.

Эти числа вошли в математику давно, они появляются еще в евклидовых размышлениях о современных числах. Свое название они получили в честь французского монаха Меренна Мерсена (1589-1648), который долго занимался проблемой современных чисел.

Если вычислять числа по этой формуле, получим:

M 2 = 2 2 – 1 = 3 – простое;

M 3 = 2 3 – 1 = 7 – простое;

M 5 = 2 5 – 1 = 31– простое;

M 7 = 2 7 – 1 = 127 – простое;

M 11 = 2 11 – 1 = 2047 = 23 * 89

Общий способ нахождения больших простых чисел Мерсена состоит в проверке всех чисел M p для различных простых чисел р.

Эти числа очень быстро увеличиваются и столь же быстро увеличиваются затраты труда на их нахождение.

В исследовании чисел Мерсена можно выделить ран­нюю стадию, достигшую своей кульминации в 1750 г., когда Эйлер установил, что число M 31 является простым. К тому времени было найдено восемь простых чисел Мер­сена: " г

р = 2, р= 3, р = 5, р = 7, р = 13, р = 17, р = 19, р =31.

Эйлерово число M 31 оставалось самым большим из из­вестных простых чисел более ста лет.

В 1876 г. французский математик Лукас установил, что огромное число M 127 - с 39 цифрами. 12 простых чисел Мерсена были вычислены с помощью только карандаша и бумаги, а для вычисления следующих уже использова­лись механические настольные счетные машины.

Появление вычислительных машин с электрическим приводом позволило продолжить поиски, доведя их до р = 257.

Однако результаты были неутешительными, среди них не оказалось новых простых чисел Мерсена.

Затем задача была переложена на ЭВМ.

Самое большое известное в настоящее время простое число имеет 3376 цифр. Это число было найдено на ЭВМ в Иллинойском университете (США). Математический факультет этого университета был так горд своим достиже­нием, что изобразил это число на своем почтовом штемпе­ле, таким образом воспроизводя его на каждом отсылае­мом письме для всеобщего обозрения.

Простые числа Ферма

Существует еще один тип про­стых чисел с большой и интерес­ной историей. Они были впервые введены французским юристом Пьером Ферма (1601-1665), кото­рый прославился своими выдающи­мися математическими работами.

Пьер Ферма (1601-1665)
Первыми простыми числами Ферма были числа, которые удов­летворяли формуле F n =
+ 1.

F 0 =
+ 1 = 3;

F 1 =
+ 1 = 5;

F 2 =
+ 1 = 17;

F 3 =
+ 1 = 257;

F 4 =
+ 1 = 65537.

Однако, это предположение было сдано в архив не­оправдавшихся математических гипотез, но после того, как Леонард Эйлер сделал еще один шаг и показал, что следующее число Ферма F 5 = 641 6 700 417 является со­ставным.

Возможно, что история чисел Ферма была бы законче­на, если бы числа Ферма не появились в совсем другой задаче - на построение правильных многоугольников при помощи циркуля и линейки.

Однако ни одного простого числа Ферма не было най­дено, и сейчас многие математики склонны считать, что их больше нет.
Решето Эратосфена

Существуют таблицы простых чисел, простирающих­ся до очень больших чисел. Как подступиться к составле­нию такой таблицы? Эта задача была, в известном смыс­ле, решена (около 200 г. до н. э.) Эратосфеном, математи­ком из Александрии. -

Его схема состоит в следующем. Напишем последова­тельность всех целых чисел от 1 до числа, которым мы хотим закончить таблицу.

Начнем с простого числа 2. Будем выбрасывать каж­дое второе число. Начнем с 2 (кроме самого числа 2), т. е. четных чисел: 4, 6, 8, 10 и т. д., подчеркиваем каждое из них.

После этой операции первым неподчеркнутым числом будет 3. Оно простое, так как не делится на 2. Оставляя число 3 неподчеркнутым, будем подчеркивать каждое тре­тье число после него, т. е. числа 6, 9, 12, 15... Некоторые из них были уже подчеркнуты, поскольку они являются четными. На следующем шаге первым неподчеркнутым числом окажется число 5; оно простое, так как не делится ни на 2, ни на 3. Оставим число 5 неподчеркнутым, но подчеркнем каждое пятое число после него, т. е. числа 10, 15, 20... Как и раньше, часть из них оказалась под­черкнутой. Теперь наименьшим неподчеркнутым числом окажется число 7. Оно простое, так как не делится ни на одно из меньших его простых чисел 2, 3, 5. Повторяя этот процесс, мы в конце концов получим последовательность неподчеркнутых чисел; все они (кроме числа 1) являются простыми. Этот метод отсеивания чисел известен как «решето Эратосфена». Любая таблица простых чисел создается по этому принципу.

Эратосфен создал таблицу простых чисел от 1 до 120 более 2000 лет назад. Он писал на папирусе, натянутом на рамку, или на восковой дощечке, и не зачеркивал, как это делаем мы, а прокалывал составные числа. Получа­лось нечто вроде решета, через которое «просеивались» составные числа. Поэтому таблицу простых чисел назы­вают «решетом Эратосфена».

Сколько всего простых чисел? Есть ли последнее про­стое число, т. е. такое, после которого все числа будут составными? Если такое число есть, то как его найти? Все эти вопросы интересовали ученых еще в глубокой древно­сти, но ответ на них оказалось не так-то просто найти.

Эратосфен был остроумнейшим человеком. Этот совре­менник и друг Архимеда, с которым он постоянно пере­писывался, был и математиком, и астрономом, и механи­ком, что считалось естественным для великих мужей того времени. Он первым измерил диаметр земного шара, при­чем не выходя из александрийской библиотеки, где рабо­тал. Точность его измерения была поразительно высокой, даже выше той, с которой измерил Землю Архимед.

Эратосфен изобрел хитроумный прибор - мезолабит, с помощью которого механически решил известную зада­чу об удвоении куба, чем очень гордился, и потому отдал распоряжение изобразить этот прибор на колонне в Алек­сандрии. Мало того, он поправил египетский календарь, добавив один день к четырем годам - в високосный год.

Решето Эратосфена - это примитивное и в то же вре­мя гениальное изобретение, до которого не додумался и Евклид, - наводит на общеизвестную мысль, что все гениальное просто.

Эратосфеново решето неплохо поработало на исследо­вателей далеко не простых чисел. Шло время. Шли поис­ки способов отлова простых чисел. Началось своеобразное соревнование на изыскание наибольшего простого числа с древнейших времен до Чебышева и даже до наших дней.
Открытие П.Л. Чебышева

Итак, число простых чисел бесконечно. Мы уже виде­ли, что простые числа размещаются без какого-либо по­рядка. Проследим более подробно.

2 и 3 - простые числа. Это единственная пара про­стых чисел, стоящих рядом.

Затем идут 3 и 5, 5 и 7, 11 и 13, 17 и 19 и т.д. Это так называемые смежные простые числа или близнецы. Близ­нецов много: 29 и 31, 41 и 43, 59 и 61, 71 и 73, 101 и 103, 827 и 829 и т. д. Самая большая известная сейчас пара близнецов такая: 10016957 и 10 016 959.

Панфутий Львович Чебышев

Как же распределены простые числа в натуральном ряду, в котором не будет ни одного простого числа? Есть ли какой-нибудь закон в их распреде­лении или нет?


Если есть, то какой? Как найти его? Но ответ на эти вопросы не находился более 2000 лет.

Первый и очень большой шаг в раз­решении этих вопросов сделал великий русский ученый Панфутий Львович Чебышев. В 1850 г. он доказал, что меж­ду любым натуральным числом (не рав­ным 1) и числом, в два раза больше его (т. е. между n и 2n), находится хотя бы одно простое число.
Проверим это на несложных примерах. Примем для n несколько произвольных значений n. и найдем соответственно значение 2n.

n = 12, 2n = 24;

n = 61, 2n = 122;

n = 37, 2n = 74.

Мы видим, что для рассмотренных примеров теорема Чебышева верна.

Чебышев доказал ее для любого случая, для любого n. За эту теорему его назвали победителем простых чисел. Открытый Чебышевым закон распределения простых чи­сел был поистине фундаментальным законом в теории чисел после закона, открытого Евклидом, о бесконечно­сти количества простых чисел.

Едва ли не самый добрый, самый восторженный от­клик на открытие Чебышева пришел из Англии от извест­ного математика Сильвестра: «...Дальнейших успехов те­ории простых чисел можно ожидать тогда, когда родится некто, настолько превосходящий Чебышева своей прони­цательностью и вдумчивостью, насколько Чебышев пре­восходит этими качествами обыкновенных людей».

Более чем полвека спустя немецкий математик Э. Лан­дау, крупный специалист в теории чисел, добавил к это­му высказыванию следующее: «Первым после Евклида Чебышев пошел правильным путем при решении пробле­мы простых чисел и достиг важных результатов».
Проблема Гольдбаха

Выпишем все простые числа от 1 до 50:

2, 3, 5, 7, 9, 11, 17, 19, 23, 29, 31, 37, 41, 43, 47.

А теперь попытаемся любое число от 4 до 50 предста­вить в виде суммы двух или трех простых чисел. Возьмем несколько чисел наугад:

Как видим, поставленную задачу мы выполнили без труда. А всегда ли это возможно? Любое ли число можно представить в виде суммы нескольких простых чисел? И если можно, то скольких: двух? трех? десяти?

В 1742 г. член Петербургской академии наук Гольдбах в письме к Эйлеру высказал предположение, что любое целое положительное число, большее пяти, представляет собой сумму не более чем трех простых чисел.

Гольдбах испытал очень много чисел и ни разу не встре­тил такого числа, которое нельзя было бы разложить на сумму двух или трех простых слагаемых. Но будет ли так всегда, он не доказал. Долго ученые занимались этой за­дачей, которая названа «проблемой Гольдбаха» и сформу­лирована следующим образом.

Требуется доказать или опровергнуть предложение:

всякое число, большее единицы, является суммой не более трех простых чисел.

Почти 200 лет выдающиеся ученые пытались разре­шить проблему Гольдбаха-Эйлера, но безуспешно. Мно­гие пришли к выводу о невозможности ее решить.

Но решение ее, и почти полностью, было найдено в 1937 г. советским математиком И.М. Виноградовым.

И.М. Виноградов

Иван Матвеевич Виноградов явля­ется одним из крупнейших современ­ных математиков. Родился он 14 сен­тября 1891 г. в селе Милолюб Псков­ской губернии. В 1914 г. окончил Пе­тербургский университет и был остав­лен для подготовки к профессорскому званию.

Свою первую научную работу И.М. Виноградов написал в 1915 г. С тех пор им написано более 120 различных научных работ. В них он разрешил много задач, над кото­рыми ученые всего мира трудились десятки и сотни лет.

Иван Матвеевич Виноградов
За заслуги в области математики И.М. Виноградов все­ми учеными мира признан одним из первых математиков современности, избран в число членов многих академий мира.

Мы гордимся нашим замечательным соотечественни­ком.


Заключение.
Из класса - в мировое пространство

Беседу о простых числах начнем увлекательным рас­сказом о воображаемом путешествии из класса в мировое пространство. Это воображаемое путешествие придумал известный советский педагог-математик профессор Иван Козьмич Андронов (род. в 1894 г.). «...а) мысленно возьмем прямолинейный провод, вы­ходящий из классной комнаты в мировое пространство, пробивающий земную атмосферу, уходящий туда, где Луна совершает вращение, и далее - за огненный шар Солнца, и далее - в мировую бесконечность;

б) мысленно подвесим на провод через каждый метр электрические лампочки, нумеруя их, начиная с бли­жайшей: 1, 2, 3, 4, ..., 100, ..., 1000, ..., 1 000 000...;

в) мысленно включим ток с таким расчетом, чтобы загорелись все лампочки с простыми номерами и только с простыми номерами; : .

г) мысленно долетим вблизи провода.

Перед нами развернется следующая картина.

1. Лампочка с номером 1 не горит. Почему? Потому что единица не есть простое число.

2. Две следующие лампочки с номерами 2 и 3 горят, так как 2 и 3 - оба простые числа. Могут ли в дальней­шем встретиться две смежные горящие лампочки? Нет, не могут. Почему? Всякое простое число, кроме двух, есть число нечетное, а смежные с простым по ту и другую сто­рону будут числа четные, а всякое четное, отличное от двух, является составным числом, так как делится на два.

3. Дальше наблюдаем пару лампочек, горящих через одну лампочку с номерами 3 и 5, 5 и 7 и т. д. Понятно, почему они горят: это близнецы. Замечаем, что в даль­нейшем они встречаются реже; все пары близнецов, как и пары простых чисел, имеют вид 6n ± 1; например

6*3 ± 1 равно 19 и 17

или 6*5 ± 1 равно 31 и 29, ...;

но 6*20 ± 1 равно 121 и119- эта пара не близнец, так как есть пара составных чи­сел.

Долетаем до пары близнецов 10 016 957 и 10 016 959. Будут ли и дальше пары близнецов? Современная наука пока ответа не дает: неизвестно, существует ли конечное или бесконечное множество пар близнецов.

4. Но вот начинает действовать закон большого проме­жутка, заполненного только составными номерами: летим в темноте, смотрим назад - темнота, и впереди не видно света. Вспоминаем свойство, открытое Евклидом, и смело движемся вперед, так как впереди должны быть светя­щиеся лампочки, и впереди их должно быть бесконечное множество.

5. Залетев в такое место натурального ряда, где уже несколько лет нашего движения проходит в темноте, вспо­минаем свойство, доказанное Чебышевым, и успокаива­емся, уверенные, что во всяком случае, надо лететь не больше того, что пролетели, чтобы увидеть хотя бы одну светящуюся лампочку».
Литература
1. Великий мастер индукции Леонард Эйлер.

2. За страницами учебника математики.

3. Прудников Н.И. П.Л. Чебышев.

4. Сербский И. А. Что мы знаем и чего не знаем о простых числах.

5. Издательский дом «Первое сентября». Математика №13, 2002 г.

6. Издательский дом «Первое сентября». Математика №4, 2006 г.

Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 ? 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 ? 11.

Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл?-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд? (1/n), но и ряд вида

1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

?(n) = n/(log(n) - 1.08366)

А Гаусс – как логарифмический интеграл

?(n) = ? 1/log(t) dt

С промежутком интегрирования от 2 до n.

Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

  • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
  • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
  • бесконечно ли количество простых чисел вида n 2 + 1 ?
  • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
  • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
  • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
  • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
  • n 2 - n + 41 – простое число для 0 ? n ? 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ? n ? 79.
  • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
  • бесконечно ли количество простых чисел вида n# -1 ?
  • бесконечно ли количество простых чисел вида n! + 1?
  • бесконечно ли количество простых чисел вида n! – 1?
  • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
  • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

Самые большие близнецы среди простых чисел – это 2003663613 ? 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

Вы можете помочь и перевести немного средств на развитие сайта



Молоков Максим

В этом году мы изучили тему «Простые и составные числа», и мне стало интересно, кто из учёных занимался их изучением, как получить простые числа, кроме тех, которые содержатся на форзаце нашего учебника (от 1 до 1000), это стало целью выполнения этой работы.
Задачи:
1. Изучить историю открытия простых чисел.
2. Познакомиться с современными методами отыскания простых чисел.
3. Узнать о том, в каких научных областях применяются простые числа.
4. Есть ли среди русских учёных имена тех, кто занимался изучением простых чисел.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

История простых чисел МБОУ Суховская СОШ Автор: ученик 6 класса Молоков Максим Руководитель: учитель математики Бабкина Л. А. п. Новосуховый декабрь 2013 год

В этом году мы изучили тему «Простые и составные числа», и мне стало интересно, кто из учёных занимался их изучением, как получить простые числа, кроме тех, которые содержатся на форзаце нашего учебника (от 1 до 1000), это стало целью выполнения этой работы. Задачи: 1. Изучить историю открытия простых чисел. 2. Познакомиться с современными методами отыскания простых чисел. 3. Узнать о том, в каких научных областях применяются простые числа. 4. есть ли среди русских учёных имена тех, кто занимался изучением простых чисел.

Всякий, кто изучает простые числа, бывает очарован и одновременно ощущает собственное бессилие. Определение простых чисел так просто и очевидно; найти очередное простое число так легко; разложение на простые сомножители - такое естественное действие. Почему же простые числа столь упорно сопротивляются нашим попыткам постичь порядок и закономерности их расположения? Может быть, в них вообще нет порядка, или же мы так слепы, что не видим его? Ч. Узерелл.

Пифагор и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа) , они называли совершенным числом. Например,числа 6 (6 = 1 + 2 +3) , 28 (28 = 1+2+4+7+14) совершенные. Следующие совершенные числа – 496, 8128, 33550336.. Пифагор (VI в. до н.э.)

Пифагорейцы знали только первые три совершенных числа. Четвёртое – 8128 – стало известным в первом веке н.э. Пятое – 33550336 – было найдено в XV в. К 1983 г. Было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли нечётные совершенные числа, есть ли самое большое совершенное число.

Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде произведения простых чисел, т.е. простые числа – это как бы кирпичики, из которых строятся остальные натуральные числа.

Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно – в одних частях ряда их больше, в других – меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа.

Возникает вопрос: существует ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н.э.) в своей книге («Начала»), бывшей на протяжении 2000 лет основным учебником математики, доказал, что простых чисел бесконечно много, т.е. за каждым простым числом есть большее простое число Евклид (III в. до н.э.)

Для отыскания простых чисел другой греческий математик Эратосфен придумал такой способ. Он записывал все числа от одного до какого-то числа, а потом вычёркивал единицу, которая не является не простым, не составным числом, затем вычёркивал через одно все числа, идущие после 2 числа, кратные двум, т.е. 4,6,8, и т.д.

Первым оставшимся числом после двух было 3. Далее вычёркивались через два все числа, идущие после трёх (числа кратные 3, т.е. 6,9,12, и т.д.). В конце концов оставались невычеркнутыми только простые числа.

Так как греки делали записи на покрытых воском табличках или на тянутом папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето. Поэтому метод Эратосфена называют решетом Эратосфена: в этом решете «отсеиваются» простые числа от составных.

Итак, простыми числами от 2 до 60 являются 17 чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59. таким способом и в настоящее время составляют таблицы простых чисел, но уже с помощью вычислительных машин.

Евклид (III в. до н.э.) доказал, что между натуральным числом n и n ! обязательно найдётся хотя бы одно простое число. Тем самым он доказал, что натуральный ряд чисел бесконечен. В середине Х I Х в. русский математик и механик Пафнутий Львович Чебышев доказал более сильную теорему, чем Евклид. Между натуральным числом n и числом в 2 раза больше его, т.е. 2 n содержится хотя бы одно простое число. То есть, в теореме Евклида число n ! заменил числом 2n. Пафнутий Львович Чебышёв (1821-1894) русский математик и механик

Возникает следующий вопрос: «Если так трудно найти следующее простое число, то где и для чего эти числа можно использовать на практике?» Наиболее распространенным примером использования простых чисел является применение их в криптографии (шифровании данных). Самые безопасные и трудно дешифруемые методы криптографии основаны на применении простых чисел, имеющих в составе более трех сотен цифр.

Заключение Проблема отсутствия закономерностей распределения простых чисел занимает умы человечества еще со времен древнегреческих математиков. Благодаря Евклиду мы знаем, что простых чисел бесконечно много. Эрастофен предложил первый алгоритм тестирования чисел на простоту. Чебышев и многие другие известные математики пытались и пытаются по сей день разгадать загадку простых чисел. На сегодняшний момент найдено и предложено множество изящных алгоритмов, закономерностей, но все они применимы лишь для конечного ряда простых чисел или простых чисел специального вида. Передним же краем науки в исследованиях простых чисел на бесконечности считается доказательство гипотезы Римана. Она входит в семерку неразрешенных проблем тысячелетия, за доказательство или опровержение которой математическим институтом Клэя предложена премия в 1.000.000 $.

Интернет – источники и литература http://www.primenumb.ru/ http://www.bestpeopleofrussia.ru/persona/Pafnutiy-Chebyshev/bio/ http://uchitmatematika.ucoz.ru/index/vayvayvayjajavvvjavvvvva/0-7 Учебник «Математика» для шестого класса образовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбург – М. Мнемозина 2010 г./

Похожие статьи

© 2024 myneato.ru. Мир космоса. Лунный календарь. Осваиваем космос. Солнечная система. Вселенная.