Соединение юпитер - сатурн. Сатурн – Журнал "Все о Космосе"

В античной мифологии планета Сатурн был божественным отцом Юпитера. Сатурн был богом Времени и Судьбы. Считается, что Юпитер в своем мифическом обличии пошел намного дальше отца. Также Сатурну принадлежит 2-я роль среди планет в Солнечной системе. Сатурн 2-й как по массе, так и по размерам. Но не смотря на это он позади большинство тел солнечной системы по плотности.

Сатурн, не желая мириться с отставанием от Юпитера, обжился огромным количеством спутников и, главное, прекрасным кольцом, благодаря которому 6-я планета серьезно претендует на 1-ое место в борьбе на звание «Великолепие». Благодаря этому очень много астрономических книг на своих обложках предпочитают размещать именно Сатурн, а не Юпитер.

Планета Сатурн имеет возможность достигать отрицательной звездной величины в период противостояния планеты. В простые телескопы легко можно рассмотреть диск и кольцо, если оно хоть чуть-чуть развернуто к Земле. Кольцо из-за движения планеты по орбите меняет свою ориентацию по отношению к Земле. Когда плоскость кольца пересекает Землю, даже в хорошие телескопы разглядеть его практически невозможно: оно очень тонкое. Затем кольцо все больше и больше разворачивается к нам, а планета, соответственно, делается все ярче и ярче с каждым новым противостоянием. В 1-ый год, уже близкого, третьего тысячелетия, в день противостояния 3-го декабря Сатурн разгорится до -0,45-й звездной величины. В этот год кольца максимально развернутся к Земле.

Что еще можно увидеть, смотря на Сатурн? Титан - самый большой спутник. Он имеет блеск порядка 8,5-й звездной величины. Из-за маленькой контрастности, облака Сатурна разглядеть сложнее, чем облачные полосы на Юпитере. Зато легко можно определить сжатие планеты у полюсов, которое достигает 1:10.планеты

Сатурн посетило 3 космических аппарата, которые предварительно побывали на Юпитере: "Пионер 11", "Вояджер 1" и "Вояджер 2.

Общие сведения

Планета Сатурн, наверное, наиболее красивая планета, если смотреть на нее в телескоп или изучать снимки «Вояджеров». Сказочные кольца нельзя спутать ни с какими другими объектами Солнечной системы. Планета известна с самых древних времен. Максимальная видимая звездная величина +0,7m. Эта планета – один из самых ярких объектов на нашем звездном небе. Ее тусклый белый свет создал планете недобрую славу: рождение под знаком Сатурна издревле считалось плохим предзнаменованием.

Кольца видимы с Земли в небольшой телескоп. Они состоят из тысяч и тысяч небольших твердых обломков камней и льда, которые вращаются вокруг планеты.

Период вращения вокруг оси – звездные сутки – составляет 10 часов 14 минут (на широтах до 30°). Так как Сатурн – не твердый шар, а состоит из газа и жидкости, то экваториальные его части быстрее вращаются, чем приполярные области: на полюсах один оборот совершается примерно на 26 минут медленнее. Средний период обращения вокруг оси – 10 часов 40 минут.

Сатурн имеет одну интересную особенность: он – единственная планета в Солнечной системе, чья плотность меньше плотности воды (700 кг на кубический метр). Если бы было возможно создать огромный океан, Сатурн смог бы в нем плавать! По внутреннему строению и составу Сатурн сильно напоминает Юпитер. В частности, на Сатурне в экваториальной области также существует Красное Пятно, хотя оно и меньших размеров, чем на Юпитере.

На две трети планета состоит из водорода. На глубине, примерно равной R/2, то есть половине радиуса планеты, водород при давлении около 300 ГПа переходит в металлическую фазу. По мере дальнейшего увеличения глубины, начиная с R/3, возрастает доля соединений водорода и оксидов. В центре планеты (в области ядра) температура порядка 20000 К.

Всякий, кто наблюдал планеты в телескоп, знает, что на поверхности Сатурна, то есть на верхней границе его облачного покрова, заметно мало деталей и контраст их с окружающим фоном невелик. Этим он отличается от Юпитера, где присутствует множество контрастных деталей в виде темных и светлых полос, волн, узелков, свидетельствующих о значительной активности его атмосферы.

Возникает вопрос, действительно ли атмосферная активность Сатурна (например скорость ветра) ниже, чем у Юпитера, или же детали его облачного покрова просто хуже видны с Земли из-за большего расстояния (около 1,5 млрд. км.) и более скудного освещения Солнцем (почти в 3,5 раза слабее освещения Юпитера)?

"Вояджерам" удалось получить снимки облачного покрова, на которых отчетливо запечатлена картина атмосферной циркуляции: десятки облачных поясов, простирающихся вдоль параллелей, а также отдельные вихри. Обнаружен, в частности, аналог Большого Красного Пятна Юпитера, хотя и меньших размеров. Установлено, что скорости ветров на Сатурне даже выше, чем на Юпитере: на экваторе 480 м/с, или 1700 км/ч. Число облачных поясов больше, чем на Юпитере, и достигают они более высоких широт. Таким образом, снимки облачности демонстрируют своеобразие атмосферы Сатурна, которая даже активнее юпитерианской.


Метеорологические явления происходят при более низкой температуре, нежели в земной атмосфере. Поскольку Сатурн в 9,5 раз дальше от Солнца, чем Земля, он получает в 9,5 =90 раз меньше тепла. Температура планеты на уровне верхней границы облачного покрова, где давление равно 0,1 атм, составляет всего 85 К, или -188 С. Интересно, что за счет нагревания одним Солнцем даже такой температуры получить нельзя. Расчет показывает: в недрах Сатурна имеется свой собственный источник тепла, поток от которого в 2,5 раза больше, чем от Солнца. Сумма этих двух потоков и дает наблюдаемую температуру планеты.

Космические аппараты подробно исследовали химический состав надоблачной атмосферы Сатурна. В основной она состоит почти на 89% из водорода. На втором месте гелий (около 11% по массе). Дефицит гелия объясняют гравитационным разделением гелия и водорода в недрах планеты: гелий, который тяжелее, постепенно оседает на большие глубины (что, кстати говоря, высвобождает часть энергии, "подогревающей" Сатурн). Другие газы в атмосфере - метан, аммиак, этан, ацетилен, фосфин - присутствуют в малых количествах. Метан при столь низкой температуре (около -188° С) находится в основном в капельно-жидком состоянии. Он образует облачный покров Сатурна.

Что касается малого контраста деталей, видимых в атмосфере, о чем говорилось выше, то причины этого явления пока еще не вполне ясны. Было высказано предположение, что в атмосфере взвешена ослабляющая контраст дымка из мельчайших твердых частиц. Но наблюдения "Вояджера-2" опровергают это: темные полосы на поверхности планеты оставались резкими и ясными до самого края диска Сатурна, тогда как при наличии дымки они бы к краям замутнялись из-за большого количества частиц перед ними. Данные, полученные с "Вояджера-1", помогли с большой точностью определить экваториальный радиус. На уровне вершины облачного покрова экваториальный радиус составляет 60330 км. или в 9,46 раза больше земного. Уточнен также период обращения Сатурна вокруг оси: один оборот он совершает за 10 ч. 39,4 мин - в 2,25 раза быстрее Земли. Столь быстрое вращение привело к тому, что сжатие Сатурна значительно больше, чем у Земли. Экваториальный радиус Сатурна на 10% больше полярного.

Поскольку Сатурн весьма сходен с Юпитером по своим физическим свойствам, астрономы предположили, что достаточно заметное магнитное поле есть и у него. Отсутствие же у планеты Сатурн наблюдаемого с Земли магнитно-тормозного радиоизлучения объясняли влиянием колец.

Параметры

Эллиптическая орбита Сатурна имеет эксцентриситет 0,0556 и средний радиус 9,539 а.е. (1427 млн. км). Максимальное и минимальное расстояния от Солнца равны приблизительно 10 и 9 а.е. Расстояния от Земли меняются от 1,2 до 1,6 млрд. км. Наклон орбиты планеты к плоскости эклиптики 2°29,4". Угол между плоскостями экватора и орбиты достигает 26°44". Планета Сатурн движется по своей орбите со средней скоростью 2,64 км/с; период обращения вокруг Солнца составляет 29,46 земных лет.

Планета не имеет четкой твердой поверхности, оптические наблюдения затрудняются непрозрачностью атмосферы. Для экваториального и полярного радиусов приняты значения 60,27 тыс. км и 53,5 тыс. км. Средний радиус в 9,1 раз больше, чем у Земли. На земном небе планета Сатурн выглядит как желтоватая звезда, блеск которой меняется от нулевой до первой звездной величины. Масса составляет 5,6850∙1026 кг, что в 95,1 раз превосходит массу Земли; при этом средняя плотность, равная 0,68 г/см3, почти на порядок меньше, чем плотность Земли. Ускорение свободного падения у поверхности на экваторе равно 9,06 м/с2.

Поверхность Сатурна (облачный слой), как и Юпитера, не вращается как единое целое. Тропические области в атмосфере обращаются с периодом 10 ч 14 мин земного времени, а на умеренных широтах этот период на 26 мин больше.

Средний радиус 1,4294x109 км
Эксцентриситет 0,0560
Период обращения 29л 167дн 6,7ч
Синодический период 378,1 дней
Средняя скорость движения по орбите 9,46 км/с
Наклонение орбиты 2,488°
Число спутников >50
Экваториальный диаметр 120,536 км
Плошадь поверхности 4,38 x 1010 км²
Масса 5,688 x 1026 кг
Средняя плотность 0,69 г/см³
Ускорение свободного падения у поверхности 9,05 м/с²
Период вращения экваториальный 10 ч 13 м 59 с
Период вращения внутренний 10 ч 39 м 25 с
Наклон оси вращения 25,33°
Альбедо 0,47
2-я космическая скорость 35,5 км/с
Средняя температура на уровне вершины облаков 93 K
Минимальная температура поверхности 82 K
Средняя температура поверхности 143 K
Максимальная температура поверхности н/д

Внутреннее строение

По внутреннему строению и составу планета Сатурн сильно напоминает Юпитер.


В глубине атмосферы растут давление и температура, и водород постепенно переходит в жидкое состояние. Чёткой границы, отделяющей газообразный водород от жидкого, по-видимому, не существует. Это должно выглядеть как непрерывное кипение глобального водородного океана. На глубине около 30 тыс. км водород становится металлическим (а давление достигает около 3 миллионов атмосфер). Протоны и электроны в нём существуют раздельно и он является хорошим проводником электричества. Мощные электротоки, возникающие в слое металлического водорода, порождают магнитное поле Сатурна (гораздо менее мощное, чем у Юпитера).

На глубине, примерно равной R/2, то есть половине радиуса планеты, водород при давлении около 300 ГПа переходит в металлическую фазу. По мере дальнейшего увеличения глубины, начиная с R/3, возрастает доля соединений водорода и оксидов. В центре планеты находится массивное ядро (до 20 земных масс) из камня, железа и, возможно... льда (в области ядра) температура порядка 20000 К.

Откуда взяться льду в центре Сатурна, где температура около 20 тыс. градусов? Ведь хорошо знакомая нам кристаллическая форма воды - обыкновенный лед - плавится уже при температуре 0 С при нормальном атмосферном давлении. Еще "нежнее" кристаллические формы аммиака, метана, углекислого газа, которые ученые также называют льдом. Например, твердая углекислота (сухой лед, используемый в различных эстрадных шоу) при нормальных условиях сразу же переходит в газообразное состояние, минуя жидкою стадию.

Но одно и то же вещество может образовывать различные кристаллические решетки. В частности, науке известны кристаллические модификации воды, отличающиеся друг от друга не меньше, чем печная сажа - от химически тождественного ей алмаза. Например, так называемый лед VII имеет плотность, почти вдвое превосходящую плотность обычного льда, и при больших давлениях его можно нагревать до нескольких сот градусов! Поэтому не стоит удивляться тому, что в центре Сатурна при давлении в миллионы атмосфер присутствует лед, т.е. в данном случае смесь из кристаллов воды, метана и аммиака.

Атмосфера

Светло-желтый Сатурн внешне выглядит скромнее своего соседа - оранжевого Юпитера. У него нет столь красочного облачного покрова, хотя структура атмосферы почти такая же. Верхние слои атмосферы состоят на 93% из водорода (по объёму) и на 7% - из гелия. Имеются примеси метана, водяного пара, аммиака и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских, что делает его не таким "цветным" и полосатым.

По данным «Вояджеров», на планете Сатурн дуют самые сильные ветра в Солнечной системе, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветра дуют, в основном, в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что ветры не ограничены слоем верхних облаков, они должны распространяться внутрь, по крайней мере, на 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветра в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.


Хотя пятна атмосферных вихрей на Сатурне уступают по размерам юпитерианскому Большому Красному Пятну, но и там наблюдаются грандиозные штормы, видимые даже с Земли.

Южное полушарие Сатурна. "Ураган Дракона", он хорошо виден на этом изображении, полученном в ближней ИК-области (цвета на рисунке искусственные). Исследуя результаты, полученные Кассини, ученые обнаружили, что "Ураган Дракона" является причиной таинственных вспышек в радиодиапазоне. Возможно, мы видим гигантскую грозу, когда радиошум возникает из-за высоковольтных разрядов в молниях. Снимки,переданные АМС "Вояджер-1", обнаружили несколько десятков поясов и зон, а также различные конвективные облачные образования: несколько сот светлых пятен диаметром 2000 - 3000 км, коричневые образования овальной формы шириной ~10000 км и красное овальное облачное образование (пятно) у 55° ю. ш. Протяженность красного пятна 11 000 км, по размерам оно примерно равно белым овальным образованиям на Юпитере. Красное пятно относительно стабильно. Оно окружено темным кольцом. Полагают, что оно может представлять собой "верх" конвективной ячейки. Считают, что полосы в атмосфере обусловлены температурными перепадами. Число полос достигает нескольких десятков, то есть намного больше, чем наблюдают с Земли, и больше, чем было обнаружено в атмосфере Юпитера. Ученые ожидали найти на Сатурне условия, сравнимые с условиями на Юпитере, поскольку в метеорологических явлениях обеих планет доминирующим фактором является нагрев за счет внутреннего источника тепла, а не поглощения солнечной энергии.

Однако атмосферы Сатурна и Юпитера оказались весьма различными. Например, на Юпитере наибольшие скорости ветра зарегистрированы вдоль границ полос, а на Сатурне - вдоль центральной части полос, в то время как на границах полос и зон ветер практически отсутствует. В поясах и зонах атмосферы Юпитера чередуются западные и восточные потоки, которые разделяются областями сдвига. В отличие от этого, на планете Сатурн обнаружен западный поток в очень широкой полосе от 40° с. ш. до 40° ю. ш. Согласно одной гипотезе, ветры обусловлены циклическим подъемом и опусканием больших облаков аммиака. Южная полярная область сравнительно светлая. В северной полярной области обнаружена темная шапка. Возможно, это указывает на сезонные изменения, которых не ожидали. Один профиль температуры, полученный для северного полушария, показывает, что темные пятна соответствуют сравнительно высокой температуре, а большие светлые области - несколько более низкой.


Получены новые сведения об облаке нейтрального водорода, окружающего Сатурн в той же плоскости, в которой лежат кольца планеты и обращаются ее спутники. Ранее ученые предполагали, что это облако тороидальной формы расположено вдоль орбиты Титана и имеет своим источником атмосферу Титана, где происходит диссоциация метана с освобождением водорода. Однако ультрафиолетовый.спектрометр АМС "Вояджер-1" показал, что облако расположено не вдоль орбиты Титана, а простирается с расстояния 1,5 млн. км от Сатурна (несколько дальше орбиты Титана) до расстояния 480 тыс. км от нее (район орбиты Реи). Общая масса облака 25000 т, что согласуется с имеющимися теориями; плотность всего 10 атомов в 1 см3. В атмосфере иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы. Гигантский «Большой белый овал» появляется примерно один раз в 30 лет, в последний раз он наблюдался в 1990 году (менее крупные ураганы образуются чаще).

Не до конца понятным на сегодняшний день остается такой атмосферный феномен, как «Гигантский гексагон». Он представляет собой устойчивое образование в виде правильного шестиугольника с поперечником 25 тыс. километров, которое окружает северный полюс планеты.

В атмосфере обнаружены мощные грозовые разряды, полярные сияния, ультрафиолетовое излучение водорода.

«Гигантский гексагон»


Гигантский гексагон - на сегодняшний день не имеющий строгого объяснения атмосферный феномен на планете Сатурн. Представляет собой геометрически правильный шестиугольник с поперечником в 25 тыс. километров, находящийся на северном полюсе. По всей видимости, гексагон является довольно необычным вихрем. Прямые стены вихря уходят вглубь атмосферы на расстояние до 100 км. При изучении вихря в инфракрасном диапазоне наблюдаются светлые участки, представляющие собой гигантские прорехи в облачной системе, которые простираются, как минимум, на 75 км. вглубь атмосферы.

Впервые эта структура была замечена на ряде снимков, переданных аппаратами Вояджер-1 и Вояджер-2. Поскольку объект ни разу не попал в кадр полностью и из-за низкого качества снимков, то серьёзного изучения гексагона не последовало. Реальный интерес к Гигантскому гексагону появился после передачи его снимков аппаратом «Кассини». Тот факт, что объект снова замечен после миссии Вояджеров, проходившей более четверти века назад, говорит о том, что гексагон представляет собой довольно устойчивое атмосферное образование.

Полярная зима и удачный угол обзора дали специалистам возможность рассмотреть глубинную структуру гексагона. Предполагается, что гексагон не связан с авроральной активностью планеты или её радиоизлучением, несмотря на то, что структура расположена внутри аврорального овала. Вместе с тем, объект, по данным «Кассини», вращается синхронно с вращением глубинных слоёв атмосферы и, возможно, синхронно с её внутренними частями. Если гексагон неподвижен относительно глубинных слоёв Сатурна (в отличие от наблюдаемых верхних слоёв атмосферы в более низких широтах), он может послужить опорой в определении истинной скорости вращения.

Сейчас основной точкой зрения по поводу природы феномена является модель, согласно которой Гигантский гексагон представляет собой некую стабильную волну, окружающую полюс.

Космические характеристики

При пролете около Сатурна АМС "Вояджер-1" обнаружила явления, которые, по-видимому, представляют собой интенсивные всплески радиоизлучения в районе планеты. Всплески происходили во всем регистрируемом частотном диапазоне и, возможно, исходят от колец планеты. Согласно другим предположениям, всплески могли быть порождены молниями в атмосфере планеты. Приборы АМС регистрировали скачок напряжения, в 106 раз превышающий то, что обусловила бы столь же удаленная вспышка молнии в земной атмосфере.

Ультрафиолетовый спектрометр зарегистрировал в южной полярной области Сатурна полярные сияния, охватывающие область протяженностью свыше 8000 км и сравнимые по интенсивности с такими явлениями на Земле.

Магнитосфера

До тех пор, пока первые космические аппараты не достигли Сатурна, наблюдательных данных о его магнитном поле не было вообще, но из наземных радиоастрономических наблюдений следовало, что Юпитер обладает мощным магнитным полем. Об этом свидетельствовало нетепловое радиоизлучение на дециметровых волнах, источник которого оказался больше видимого диска планеты, причем он вытянут вдоль экватора Юпитера симметрично по отношению к диску. Такая геометрия, а также поляризованность излучения свидетельствовали о том, что наблюдаемое излучение магнитно-тормозное и источник его - электроны, захваченные магнитным полем Юпитера и населяющие его радиационные пояса, аналогичные радиационным поясам Земли. Полеты к Юпитеру подтвердили эти выводы.

Поскольку Сатурн весьма сходен с Юпитером по своим физическим свойствам, астрономы предположили, что достаточно заметное магнитное поле есть и у него. Отсутствие же наблюдаемого с Земли магнитно-тормозного радиоизлучения объясняли влиянием колец.

Эти предложения подтвердились. Еще при подлете "Пионера-11" его приборы зарегистрировали в около планетном пространстве образования, типичные для планеты, обладающей ярко выраженным магнитным полем: головную ударную волну, границу магнитосферы (магнитопаузу), радиационные пояса. В целом магнитосфера весьма сходна с земной, но, конечно, значительно больше по размерам. Внешний радиус магнитосферы в подсолнечной точке составляет 23 экваториальных радиуса планеты, а расстояние до ударной волны - 26 радиусов.

Радиационные пояса настолько обширны, что охватывают не только кольца, но и орбиты некоторых внутренних спутников планеты.


Как и ожидалось, во внутренней части радиационных поясов, которая "перегорожена" кольцами Сатурна, концентрация заряженных частиц значительно меньше. Причину этого легко понять, если вспомнить, что в радиационных поясах частицы совершают колебательные движения примерно в меридиональном направлении, каждый раз пересекая экватор. Но у Сатурна в плоскости экватора располагаются кольца: они поглощают почти все частицы, стремящиеся пройти сквозь них. В результате внутренняя часть радиационных поясов, которая в отсутствие колец была бы в системе наиболее интенсивным источником радиоизлучения, оказывается ослабленной. Тем не менее "Вояджер-1", приблизившись к планете, все же обнаружил нетепловое радиоизлучение его радиационных поясов.

Магнитное поле порождается электрическими токами в недрах планеты, - по-видимому, в слое, где под влиянием колоссальных давлений водород перешел в металлическое состояние. При вращении этого слоя с той угловой скоростью вращается и магнитное поле.

Вследствие большой вязкости вещества внутренних частиц планеты все они вращаются с одинаковым периодом. Таким образом, период вращения магнитного поля - это в то же время период вращения большей части массы (кроме атмосферы, которая вращается не как твердое тело).

Полярные сияния

Полярные сияния Сатурна вызваны высокоэнергетическим потоком от Солнца, которое охватывает планету. Полярное сияние может быть замечено только в ультрафиолетовом свете, создание которого не помогает рассмотреть его с Земли.


Это снимок полярного сияния, сделанный в ультрафиолете двумерным спектрографом (STIS) космического телескопа. Расстояние до Сатурна - 1.3 млрд. км. Полярное сияние имеет вид кольцевого занавеса, окружающего оба магнитных полюса планеты. Занавес поднимается более чем на полторы тысячи километров над поверхностью облаков.

Полярное сияние аналогично земному - оба связаны с частицами солнечного ветра, которые захватываются магнитным полем планеты как ловушкой и двигаются вдоль силовых линий от полюса к полюсу туда - обратно. В ультрафиолете полярное сияние лучше выделяется на фоне планеты благодаря сильному люминесцентному свечению водорода.

Изучение началось более 20 лет назад: «Пионер 11» обнаружил увеличение яркости у полюсов в далеком ультрафиолете в 1979г. Пролеты «Вояждеров» 1 и 2 в начале 1980-х дали общее описание полярного сияния. Эта аппараты впервые промерили магнитное поле, которое оказалось очень сильным.

Инфракрасное свечение

Известный своей яркой системой колец и многочисленными спутниками, газовый гигант Сатурн выглядит странным и незнакомым на этом представленном в искусственных цветах снимке, полученном космическим аппаратом «Кассини». Действительно, на этом составном изображении, полученном с помощью визуального и инфракрасного картирующего спектрометра (Visual and Infrared Mapping Spectrometer - VIMS) знаменитые кольца почти не различимы. Они видны с ребра и пересекают центр картинки.


Самый эффектный контраст на изображении - вдоль терминатора, или границы дня и ночи. Сине-зеленые оттенки справа (на дневной стороне) - это видимый солнечный свет, отраженный от вершин облаков. Но слева (на ночной стороне) солнечного света нет, и в инфракрасном излучении теплых внутренних частей планеты, похожем на свет китайского фонарика, видны силуэты деталей более глубоких слоев облаков. Тепловое инфракрасное свечение видно также в тенях колец, широкими полосами пересекающих северное полушарие.


Кольцевая система

С Земли в телескоп хорошо видны три кольца: внешнее, средней яркости кольцо А; среднее, наиболее яркое кольцо В и внутреннее, неяркое полупрозрачное кольцо С, которое иногда называется креповым. Кольца чуть белее желтоватого диска Сатурна. Расположены они в плоскости экватора планеты и очень тонки: при общей ширине в радиальном направлении примерно 60 тыс.км. они имеют толщину менее 3 км. Спектроскопически было установлено, что кольца вращаются не так, как твердое тело, - с расстоянием скорость убывает. Более того, каждая точка колец имеет такую скорость, какую имел бы на этом расстоянии спутник, свободно движущийся по круговой орбите.

Отсюда ясно: кольца по существу представляют собой колоссальное скопление мелких твердых частиц, самостоятельно обращающихся вокруг планеты. Размеры частиц столь малы, что их не видно не только в земные телескопы, но и с борта космических аппаратов.


Характерная особенность строения колец - темные кольцевые промежутки (деления), где вещества очень мало. Самое широкое из них (3500 км) отделяет кольцо В от кольца А и называется "делением Кассини" в честь астронома, впервые увидевшего его в 1675 году. При исключительно хороших атмосферных условиях таких делений с Земли видно свыше десяти. Природа их, по-видимому, резонансная. Так, деление Кассини - это область орбит, в которой период обращения каждой частицы вокруг планеты Сатурн ровно вдвое меньше, чем у ближайшего крупного спутника - Мимаса.

Из-за такого совпадения Мимас своим притяжением как бы раскачивает частицы, движущиеся внутри деления, и в конце концов выбрасывает их оттуда. Бортовые камеры "Вояджеров" показали, что с близкого расстояния кольца Сатурна похожи на граммофонную пластинку: они как бы расслоены на тысячи отдельных узких колечек с темными прогалинами между ними. Прогалин так много, что объяснить их резонансами с периодами обращения спутников уже невозможно.

Помимо колец А,В и С "Вояджеры" обнаружили еще четыре: D,E,F и G. Все они очень разрежены и потому неярки. Кольца D и E с трудом видны с Земли при особо благоприятных условиях; кольца F и G обнаружены впервые. Порядок обозначения колец объясняется историческими причинами, поэтому он не совпадает с алфавитным. Если расположить кольца по мере их удаления от Сатурна, то мы получим ряд: D,C,B,A,F,G,E. Особый интерес и большую дискуссию вызвало кольцо F.

К сожалению, вывести окончательное суждение об этом объекте пока не удалось, так как наблюдения двух "Вояджеров" не согласуются между собой. Бортовые камеры "Вояджера-1" показали, что кольцо F состоит из нескольких колечек общей шириной 60 км., причем два из них перевиты друг с другом, как шнурок. Некоторое время господствовало мнение, что ответственность за эту необычную конфигурацию несут два небольших новооткрытых спутника, движущихся непосредственно вблизи кольца F, - один из внутреннего края, другой - у внешнего (чуть медленнее первого, так как он дальше от планеты).

Притяжение этих спутников не дает крайним частицам уходить далеко от его середины, то есть спутники как бы "пасут" частицы, за что и получили название "пастухов". Они же, как показали расчеты, вызывают движение частиц по волнистой линии, что и создает наблюдаемые переплетения компонентов кольца. Но "Вояджер-2", прошедший близ Сатурна девятью месяцами позже, не обнаружил в кольце F ни переплетений, ни каких-либо других искажений формы, - в частности, и в непосредственной близости от "пастухов". Таким образом, форма кольца оказалась изменчивой. Для суждения о причинах и закономерностях этой изменчивости двух наблюдений, конечно, мало. С Земли же наблюдать кольцо F современными средствами невозможно - яркость его слишком мала.


Кольцо D - ближайшее к планете. Видимо, оно простирается до самого облачного шара Сатурна. Кольцо E - самое внешнее. Крайне разряженное, оно в то же время наиболее широкое из всех - около 90 тыс. км. Величина зоны, которую оно занимает, от 3,5 до 5 радиусов планеты. Плотность вещества в кольце E возрастает по направлению к орбите спутника Сатурна Энцелада. Возможно, Энцелад - источник вещества этого кольца. Частицы колец, вероятно, ледяные, покрытые сверху инеем. Это было известно еще из наземных наблюдений, и бортовые приборы космических аппаратов лишь подтвердили правильность такого вывода.

Размеры частиц главных колец оценивались из наземных наблюдений в пределах от сантиметров до метров. Когда "Вояджер-1" проходил вблизи Сатурна, радиопередатчик космического аппарата последовательно пронизывал радиолучом на волне 3,6 см. кольцо А, деление Кассини и кольцо С.

Затем радиоизлучение было принято на Земле и подверглось анализу. Удалось выяснить, что частицы указанных зон рассеивают радиоволны преимущественно вперед, хотя и несколько по-разному. Благодаря этому оценили средний поперечник частиц кольца А в 10 м, деления Кассини - в 8 м и кольца С - в 2 м. Сильное рассеяние вперед, но уже в видимом свете, обнаружено у колец F и E. Это означает наличие в них значительного количества мелкой пыли (поперечник пылинки около десятитысячных долей мм)

В кольце В обнаружили новый структурный элемент - радиальные образования, получившие названия "спиц" из-за внешнего сходства со спицами колеса. Они также состоят из мелкой пыли и расположены над плоскостью кольца. Не исключено, что "спицы" удерживаются там силами электростатического отталкивания. Любопытно отметить: изображения "спиц" были найдены на некоторых зарисовках планеты Сатурн, сделанных еще в прошлом веке. Но тогда никто не придал им значения. Исследуя кольца, "Вояджеры" обнаружили неожиданным эффект - многочисленные кратковременные всплески радиоизлучения, поступающего от колец. Это не что иное, как сигналы от электростатических разрядов - своего рода молнии.

Источник электризации частиц, по-видимому, столкновения между ними. Кроме того, была открыта окутывающая кольца газообразная атмосфера из нейтрального атомарного водорода. "Вояджерами" наблюдалась линия Лайсан-альфа (1216 А) в ультрафиолетовой части спектра. По ее интенсивности оценили число атомов водорода в кубическом сантиметре атмосферы. Их оказалось примерно 600. Нужно сказать, некоторые ученые задолго до запуска к Сатурну космических аппаратов предсказывали возможность существования атмосферы у колец. "Вояджерами" была также сделана попытка измерить массу колец. Трудность состояла в том, что масса колец по крайней мере в миллион раз меньше массы планеты Сатурн. Масса колец заведомо меньше 1,7 миллионных долей массы планеты.

Кольцо D 67 000 - 74 500 7 500
Кольцо C 74 500 - 92 000 17 500
Щель Кулона 77 800 100 Шарль Кулон???
Щель Максвелла 87 500 270 Джеймс Клерк Максвелл
Кольцо B 92 000 - 117 500 25 500
Деление Кассини 117 500 - 122 200 4 700 Джованни Кассини
Щель Гюйгенса 117680 285 - 440 Христиан Гюйгенс
Кольцо А 122 200 - 136 800 14 600
Деление Энкле 133 570 325 Иоганн Энкле
Щель Килера 136 530 35 Джеймс Килер
R/2004 S 1 137 630 ?
R/2004 S 2 138 900 ?
Кольцо F 140 210 30 - 500
Кольцо G 165 800 - 173 800 8 000
Кольцо E 180 000 - 480 000 300 000

Открытие тонкой структуры колец

Самая "оригинальная" из планет, планета Сатурн, так же, как и Марс, находится под пристальным вниманием астрономического населения Земли.

XVII ВЕК: "Ясно вижу кольцо"

Необычный вид планеты Сатурн впервые подметил Галилео Галилей летом 1610 года. Он "с великим удивлением наблюдал Сатурн не в виде одной звезды, а состоящим из трех неподвижных почти касающихся звезд, при этом центральная крупнее боковых и все три расположены на прямой линии... В трубу с меньшим увеличением они не видны как три отдельные звезды: планета Сатурн представляется удлиненной звездой в форме оливы". Галилей сравнивал боковые звезды с покорными служителями, которые помогают престарелому Сатурну совершать свой путь и всегда держатся по обе стороны от него. Вскоре, однако, природа подшутила над исследователем. В 1612 году кольцо Сатурна оказалось повернутым к Земле ребром и "покорные служители" исчезли из поля зрения галилеевой трубы.

В 1614 году "боковые звезды" Сатурна видел в свою трубу иезуит Кристофер Шайнер, в 1616 году - сам Галилей, а в 30- 50-е годы XVII века их замечали такие известные наблюдатели, как Пьер Гассенди, Франческо Фонтана, Джованни-Батиста Риччиоли, Ян Гевелий. Но хотя отдельные зарисовки планеты определенно показывали кольцевые очертания, разгадать тайну неземного дива никак не удавалось. Даже Гевелий, обнаруживший периодичность смены фаз видимости Сатурна, так и не сумел разобраться, что же представляют собой эти украшения Сатурна. Правильное объяснение "диковинки" планеты и периодических изменений ее вида дал в 1659 году Христиан Гюйгенс, наблюдавший с 1655 года планету Сатурн сначала в 12-футовый, а затем в новый 23-футовый телескоп; "Опоясан кольцом, тонким, плоским, нигде не прилегающим, к эклиптике наклоненным".

Предвидя "недоверие тех, кто считает необычным и неправильным", что он "приписывает небесному телу форму доселе не встречавшуюся, тогда как считается непреложным законом природы, что им подобает сферический вид", Гюйгенс подчеркнул: "я не измыслил это предположение благодаря своей фантазии и воображению.., а ясно вижу кольцо собственными глазами".


1 - Г. Галилей, 1610 год;2 - К. Шайнер, 1614 год;3 - П. Гассенди, 1633 год;4 - Дж. Риччиоли, 1640 год;5, 6, 7, 8 - Я. Гевелий, 1640-1650 годы;9, 10 - П. Гассенди, 1645 год;11 - Е. Дивини, 1647 год;12 - Ф. Фонтана, 1648 год;13, 14, 15 - Дж. Риччиоли, 1648-1650 годы;16, 17- X. Гюйгенс, 1656, 1659 год;18 - Дж. Кампани, 1664 год;19 - В. Болл, 1665 год;20 - Я. Гевелий, 1675 год;21 - Ж. Кассини, 1676 год

В 1664 году Джузеппе Кампани, один из признанных мастеров телескопостроения, проверяя качество своего 35-футового инструмента, "расщепил" кольцо Сатурна на два - внешнее, более темное, и внутреннее, светлое (кольца А и В по современному обозначению, введенному в XIX веке О. В. Струве). А в 1675 году Христиан Гюйгенс и Жан-Доминик Кассини обнаружили между этими двумя кольцами темную полосу. Ее впоследствии назвали делением Кассини. Таким образом, "классические" (то есть отраженные в школьном учебнике астрономии) особенности кольца Сатурна были установлены в XVII столетии.

XVIII ВЕК: разброд и шатания


С правильными представлениями об устройстве кольца планеты Сатурн впервые встречаемся в одном из трудов Жака Кассини (1715 г.). По его мнению, кольцо могло быть "скоплением спутников, которые находились в одной плоскости и обращались вокруг планеты; ...величина их столь мала, что они не могут быть заметны по отдельности, но в то же время они столь близки друг к другу, что невозможно различить промежутки между ними, поэтому кажется, будто они образуют единое сплошное тело". Эту версию Кассини аргументировал ссылкой на третий закон Кеплера, согласно которому твердое кольцо должно быть разрушено притяжением планеты.

Правда, есть веские основания считать, что подобное объяснение природы сатурнова кольца принадлежит другому французскому ученому- Персонье Робервалю, одному из создателей Парижской академии в 1666 году. Однако эта гипотеза была чисто умозрительной, а потому далеко не единственной. В 30-х годах XVIII века французский ученый и инженер П.-Л. Мопертюи предположил, что кольцо Сатурна обязано своим происхождением кометам, которые планета захватывала при близком прохождении. Головы комет становились спутниками Сатурна, а хвосты образовали кольца. Ж.-Ж. Мэран и Ж.-Л. Бюффон, коллеги Мопертюи по Парижской академии, считали кольцо остатком экваториального вещества планеты. По Мэрану, планета Сатурн первоначально имела большие размеры, но, сжимаясь в результате охлаждения, сбросила внешние слои; согласно Бюффону, кольцо отделилось от планеты вследствие избытка центробежной силы. Впервые темное внутреннее кольцо Сатурна (кольцо С) наблюдал английский астроном Томас Райт.

Кольцо Сатурна представилось ему "образованным из многих колец, из которых два видны очень хорошо и заметно третье. Я наблюдал их в рефлектор с 5-футовым фокусом в марте 1739 года, причем внешнее относилось к внутреннему (кольцо А к кольцу В), как 1 к 3, а остальная часть (кольцо С) казалась очень темной. В это время кольцо было максимально развернутым", Интересную гипотезу строения кольца Сатурна развил в 1755 году Иммануил Кант в своем труде "Всеобщая естественная история и теория неба". Ему уже было известно о наблюдении "многих концентрических колец, отделенных Друг от друга некоторым пространством". Считая кольцо "газом частиц".

Кант доказывал, что так как равновесие кольца обусловлено равенством тяготения и центробежной силы, то в соответствии с законом сохранения углового момента разреженный, но все же "столкновительный" диск будет дробиться на узкие концентрические полосы и именно это предотвратит кольцо от полного разрушения. Рассуждения Канта о динамике разреженного кольца вполне состоятельны, а вывод о дроблении кольца на концентрические зоны предвосхитил ошеломляющие открытия XIX и XX веков. Итак, классические результаты XVII века обросли пестрыми сообщениями о наблюдении различных полос на кольцах А и В.

XIX ВЕК: А все-таки оно дробится!

Любопытнейшие детали строения кольца Сатурна открылись английскому капитану Генри Кейтеру - оптику, геодезисту, метрологу. 17 декабря 1825 года наблюдая в ньютоновский телескоп (фокус 40 дюймов, апертура 6,25 дюйма), Кейтер предположил, что видит "внешнее кольцо разделенным многочисленными темными полосами, чрезвычайно близкими, причем одна сильнее остальных и делит кольцо примерно пополам". В этот же вечер явление было засвидетельствовано двумя другими людьми, которым Кейтер показывал кольцо Сатурна. 16 и 17 января 1826 года полосы представились Кейтеру менее отчетливыми.

Наконец, 22 января 1828 года, когда основное деление прослеживалось превосходно, "не ощущалось никаких следов делений внешнего кольца. Поэтому я убежден, что они не являются неизменными". О своих наблюдениях Кейтер сообщил в начале 1826 года Джону Гершелю, который вскоре исследовал кольцо Сатурна в 20-футовый телескоп и ничего особенного не обнаружил. Летом 1826 года Василий Яковлевич Струве, основываясь на своих наблюдениях, заявил: "Что касается деления кольца на многочисленные части, я не заметил никаких следов".

Однако в 1838 году римский священник Франческо де Вико в 6-дюймовый ахроматический телескоп вновь отчетливо видел и показал своим ученикам и друзьям три темные полосы - одну почти посередине кольца А и две другие на кольце В. Видимость полос немного менялась в зависимости от атмосферных условий, а при прохождении Сатурна через меридиан иногда были видны сразу шесть колец. В том же году вышла обстоятельная статья немецкого астронома Иоганна-Франца Энке. Он писал, что 25 апреля 1837 года, когда литература о делениях кольца Сатурна была ему почти неизвестна, он испытывал новый ахроматический окуляр и увидел, что "ушки" внешнего кольца разделены штрихами на две равные части. Деление систематически исследовалось в мае-июле, был выполнен ряд микрометрических измерений его положения и толщины.

Появление этой низкоконтрастной полосы, которую Энке и другие одновременно наблюдали либо посередине кольца А, либо чуть ближе к его наружному краю, обусловлено, как выяснилось в наши дни, наложением нескольких близких темных полос.

Вместе с тем современные наблюдения подтвердили наличие крайне узкой высококонтрастной щели вблизи наружного-края кольца А, которую отчетливо видел в 36-дюймовый рефрактор Ликской обсерватории (США) и зарисовал Джеймс Килер 7 января" 1888 года. Но именно эту полосу сейчас называют делением Энке. В своей статье Энке привел также данные наблюдений Иоганна-Готфри де Галле. Тот видел, что 8 мая 1838 года" "внутренний край внутреннего кольца расплывался", а 25 мая "темное пространство между Сатурном и его кольцом было образовано, вплоть до середины, плавным протяжением внутреннего края кольца в темноту".

Это робкое описание кольца С дано" через 100 лет после наблюдений Райта. Результаты Райта так и не стал достоянием широкой астрономической общественности; напротив, наблюдения Галле, опубликованные в "Записках Берлинской академии наук", получили известность "всего" 13 лет спустя, вскоре после того, как в конце 1850 года кольцо С было окончательно открыто в Америке и Европе. Осенью 1851 года независимо, на разных материках, вновь были зарегистрированы деления на кольце В. В 1859 году будущий создатель классической электродинамики Джеймс Максвелл доказал, что кольцо Сатурна не может быть единой системой, твердой или жидкой, и подтвердил - на более высоком математическом уровне - вывод Канта о дроблении кольца. Чтобы система колец могла существовать, она, утверждал Максвелл, "должна состоять из бесконечного числа независимых частиц, обращающихся вокруг планеты с различными скоростями.

Эти частицы могут собираться в серии узких колец или же могут двигаться внутри своего ансамбля хаотически. В первом случае разрушение будет чрезвычайно медленным, во втором - более быстрым, но при этом может появиться тенденция к скучиванию в узкие кольца, что замедлит разрушительное действие". Таким образом, данные наблюдений структуры кольца Сатурна получили в XIX столетии не достававшие ранее атрибуты надежных результатов: независимость от места наблюдений и конкретных инструментов, повторяемость, возможность проверки. Но почему все-таки, начиная с середины XIX века, никто больше не наблюдал многочисленных делений на кольцах А и В? Возможно, это отчасти объясняется ухудшением астроклимата - астрономы первыми ощутили последствия мирового промышленного бума.


История визуальных наблюдений кольца Сатурна, его тонкой структуры за последние лет сто почти уже забылась, но в наши дни - благодаря "указаниям" "Вояджеров"- была спешно реставрирована, и интерес к ней возродился вновь. И тогда мы узнали, что для астрономов XIX века отнюдь не в диковинку оказалось бы открытие большого числа делений на кольце планеты Сатурн.

Поразительно, насколько совпадает предполагаемое дробление кольца на рисунках английского астронома Р. Проктора, с изображением, переданным на Землю "Вояджером-1". Признавав заслуги астрономов прошлого в изучении "сатурнова украшения", Международный астрономический союз недавно присвоил отдельным делениям кольца имена Гюйгенса, Максвелла и Килера.

Спутники

Если до полетов космических аппаратов к Сатурну было известно 10 спутников планеты, то сейчас мы знаем около 60 естественных спутников Сатурна, а также три предполагаемых. Крупнейший из спутников - Титан. Ученые предполагают, что условия на этом спутнике Сатурна схожи с теми, которые существовали на нашей планете 4 миллиарда лет назад, когда на Земле только зарождалась жизнь.

Новые спутники весьма малы, но, тем не менее, некоторые из них оказывают серьезное влияние на динамику системы Сатурна. Таков, например, маленький спутник, движущийся у внешнего края кольца А, он не дает частицам кольца выходить за пределы этого края - это Атлас.


Некоторые из них имеют среднюю плотность 1,0 г/см3, что больше соответствует водяному льду. Плотность других несколько выше, но тоже невелика (исключение - Титан). Например, Рея, пятый классический спутник Сатурна, имеет плотность 1,3 г/см3. Присутствие большого количества льда в составе спутников Сатурна - это прямое указание на их образование в зоне низких температур, которые и ныне характерны для внешней части Солнечной системы. Согласно существующим теориям в период формирования планет на периферии протопланетного облака температуры были очень низкими, и легкие летучие вещества, такие, как водяной пар, конденсировались преимущественно на периферии.

Спутники названы в честь героев античных мифов о титанах и гигантах. Почти все эти космические тела светлые. У наиболее крупных спутников формируется внутреннее каменистое ядро.

Спутники планеты и ее кольца предлагают небесной механике несколько загадок. В 1980 г. несколько групп исследователей объявили о новых удивительных открытиях. Например, по орбите Дионы, четвертого крупного спутника, движется еще один спутник S6 (Хелена).

Ниже перечислены все спутники планеты Сатурн, имеющие собственные имена, в порядке их удаленности от планеты с указанием в скобках их радиусов (в километрах) и средних расстояний от Сатурна (в тысячах километров):

Пан 10 133,583
Дафнис 7 136,505
Атлас 20 137,7
Пандора 70 139,4
Прометей 55 141,7
Эпиметей 70 151,4
Янус 110 151,5
Мимас 196 185,5
Метона 1,5 194,3
Паллена 2 212,3
Энцелад 250 238
Тефия 530 294,66
Телесто 17 294,66
Калипсо 17 294,66
Диона 560 377,39
Елена (Хелена, Диона B) 18 377,39
Полидевк 1,8 377,39
Рея 754 527,1
Титан 2575 1221,9
Гиперион 205 1481
Япет 730 3560,8
Кивиок 8 11333,2
Иджирак 6 11372,8
Феба 110 12944
Палиак 9,7 14923,8
Скади 3,2 15576,2
Альбиорикс 16 16401,6
Эрриапо 4,3 17408,7
Сиарнак 20 17905,7
Тарвос 6,5 18160,2
Мундилфари 2,8 18360,1
Нарви 3,3 19370,7
Суттунг 2,8 19666,7
Трюм (Thrymr) 2,8 20810,3
Имир 8 23174,6


Все открытые спутники сравнительно малы no-размерам, имеют геометрическое альбедо 0,3-0,5 и неправильную, за одним исключением, форму. Среди них впервые были обнаружены так называемые спутники «пастухи» (иногда их по аналогии с английским термином называют «сторожевыми собаками»). Они своим гравитационным воздействием как бы фокусируют движение отдельных частиц в кольцах, не допуская их выпадения из общего ансамбля.

Орбиты малых спутников, обладающих этими особенностями, располагаются следующим образом. У самого внешнего края кольца A, на среднем расстоянии от центра Сатурна 137670 км, находится «пастух» кольца A, 1980 S 28 (Атлас), размерами около 20 км. 1980 S 27 и 1980 S 26 - соответственно внутренний и внешний «пастухи» кольца F с размерами 70х40 и 55х40 км и средним радиусом орбит 139353 и 141700 км. Два коорбитальных спутника, 1980 S 1 и 1980 S 3 (Янус и Эпиметий), немного больше: 110х90 км и 70х55 км. Их орбиты отличаются всего на 50 км: 151422 и 151472 км. На орбите Тефии (294700 км) находятся маленькие тела размером 50-60 км, 1980 S 25 и 1980 S 13 (Калипсо и Телесто), первое из которых, может, имеет более или менее правильную шаровую форму. Наконец, на орбите Дионы (377500 км) находится такое же маленькое тело - 1980 S 6.

Перейдем к классическим (крупным) спутникам Сатурна. Все они (кроме Фебы) находятся в синхронном вращении, т. е. постоянно обращены к Сатурну одной стороной (Мимас, Энцелад, Тефия, Диона, Рея, Титан, Гиперион, Япет, Феба).

Слежение за спутниками Сатурна:


На этих пяти парах фотографий, полученных космическим телескопом им. Хаббла, заметно, как некоторые спутники Сатурна движутся вокруг своей окольцованной планеты. Все снимки были сделаны последовательно, с интервалом 97 минут (это период обращения телескопа вокруг Земли) 21 ноября 1995 года. Фотографии получены 2-й широкоугольной планетной камерой. Обычно яркие кольца Сатурна видны почти с торца. На верхней паре фотографий по центру висит большой яркий спутник Диона, тогда как меньшие спутники Пандора, Прометей и Мимас (на верхнем правом снимке) находятся у диска планеты вблизи внешнего кольца.

На второй и третьей паре снимков спутники Рея и Эпиметей пролетают как бы в танце. Когда кольца Сатурна расположены торцом к Земле, уменьшается количество света, приходящего от колец. Тогда астрономам предоставляется возможность исследовать сложную систему спутников этой планеты и искать с трудом замечаемые неоткрытые спутники.

История открытий

Планета Сатурн - одна из пяти планет Солнечной системы, легко видимых невооруженным глазом с Земли. В максимуме блеск Сатурна превышает первую звёздную величину.

Впервые наблюдая планету Сатурн через телескоп в 1609-1610 годах, Галилео Галилей заметил, что Сатурн выглядит не как единое небесное тело, а как три тела, почти касающихся друг друга, и высказал предположение, что это два крупных «компаньона» (спутника) Сатурна. Два года спустя Галилей повторил наблюдения и, к своему изумлению, не обнаружил спутников.


В 1659 году Гюйгенс, с помощью более мощного телескопа, выяснил, что «компаньоны» - это на самом деле тонкое плоское кольцо, опоясывающее планету и не касающееся её. Гюйгенс также открыл самый крупный спутник Сатурна - Титан. Начиная с 1675 года изучением планеты занимался Кассини. Он заметил, что кольцо состоит их двух колец, разделённых чётко видимым зазором - щелью Кассини, и открыл ещё несколько крупных спутников Сатурна.

В 1979 году космический аппарат «Пионер-11» впервые пролетел вблизи Сатурна, а в 1980 и 1981 годах за ним последовали аппараты «Вояджер-1» и «Вояджер-2». Эти аппараты впервые обнаружили магнитное поле Сатурна и исследовали его магнитосферу, наблюдали штормы в атмосфере Сатурна, получили детальные снимки структуры колец и выяснили их состав.

В 1990-х годах планета Сатурн, его спутники и кольца неоднократно исследовались космическим телескопом Хаббл. Долговременные наблюдения дали немало новой информации, которая была недоступна для «Пионера-11» и «Вояджеров» при их однократном пролёте мимо планеты.

В 1997 году к Сатурну был запущен аппарат «Кассини-Гюйгенс» и, после семи лет полёта, 1 июля 2004 года он достиг системы Сатурна и вышел на орбиту вокруг планеты. Основными задачами этой миссии, рассчитанной минимум на 4 года, является изучение структуры и динамики колец и спутников, а также изучение динамики атмосферы и магнитосферы Сатурна. Кроме того, специальный зонд «Гюйгенс» отделился от аппарата и на парашюте спустился на поверхность спутника Сатурна Титана.

Год Ученый Открытие
1610 Г. Галилей Первое телескопическое наблюдение Сатурна. Зарисовано как три звездочки.
1633 Первая зарисовка планеты Сатурн.
1655 Г.Х. Гюйгенс 25 марта открывает кольцо Сатурна и первый спутник - Титан.
1671 Дж. Кассини Открывает спутник Япет, 23.12.1672г - спутник Рея, 1675г - цель в кольце, в 1684г спутники Тефия и Диона.
1790 В. Гершель Определяет период вращения Сатурна.
1837 И. Ф. Энке Открывает вторую щель в кольце.
1838 И. Г. Галле Открывает внутреннее кольцо Сатурна (кольцо С в кольце В).
1840 Дж. Ф. Гершель Дает название первым пяти открытым спутникам.
1857 Д. К. Максвелл Доказал теоретически, что кольца должны состоять из множества несвязанных частиц (работа печатается в 1859г).
1876 Открывается Белое пятно (наблюдается периодически).
1895 А.А. Белопольский Доказывает метеорный состав колец Сатурна.
1932 В атмосфере планеты открыты метан и аммиак.
1979 КА "Пионер - 11" Пролетая 1 сентября в 21400 км от планеты, обнаружил магнитосферу планеты и показал тонкую структуру колец. Открыты два новых кольца.
1980 КА "Вояджер - 1" 12 ноября пролетает мимо планеты в 123000 км, исследует спутник Титан, открывает 5 спутников, новые кольца.
1981г КА "Вояджер - 2" 27 августа сближается с планетой. Исследует Титан, радиационные пояса, магнитное поле.
2000г Бретт Глэдман В течение года открывает 10 новых спутников у планеты.

Сатурн в сравнении с Землей

Основные параметры Показатель Сатурна Земной показатель Сатурн/Земля
ОСНОВНЫЕ ПАРАМЕТРЫ ПЛАНЕТЫ
Масса (1024 кг) 568,46 5,9736 95,159
Объем (1010 км3) 82713 108,321 763,59
Экваториальный радиус (км) 60268 6378,1 9,449
Полярный радиус (км) 54364 6356,8 8,552
Объемный средний радиус (км) 58232 6371,0 9,140
Средняя плотность (кг/м3) 687 5515 0,125
Гравитация (м/с2) 10,44 9,80 1,065
Ускорение свободного падения (м/с2) 8,96 9,78 0,916
Вторая космическая скорость (км/с) 35,5 11,19 3,172
Альбедо 0,342 0,306 1,12
Визуальное альбедо 0,47 0,367 1,28
Солнечная энергия (W/m2) 14,90 1367,6 0,011
Температура абсолютно черного тела (К) 81,1 254,3 0,319
Момент инерции (I/MR2) 0,210 0,3308 0,635
Число естественных спутников 47 1 -
Планетарная кольцевая система Да Нет -
ОСНОВНЫЕ ПАРАМЕТРЫ ОРБИТЫ
Полуглавная ось (расстояние от Солнца) (106 км) 1433,53 149,60 9,582
Сидерический период орбиты (дней) 10759,22 365,256 29,457
Тропический период орбиты (дней) 10746,94 365,242 29,424
Максимальная орбитальная скорость (км/с) 10,18 30,29 0,336
Минимальная орбитальная скорость (км/с) 9,09 29,29 0,310
Наклон орбиты (градусы) 2,485 0,000 -
Эксцентриситет Орбиты 0,0565 0,0167 3,383
Период вращения вокруг своей оси (часы) 10,656 23,9345 0,445
Продолжительность светового дня (часы) 10,656 24,0000 0,4414
Наклон оси (градусы) 26,73 23,45 1,140
ОСНОВНЫЕ ПАРАМЕТРЫ ОБСЕРВАТОРИЙ
Исследователь Неизвестен
Дата открытия Доисторические времена
Минимальное расстояние до Земли (106 км) 1195,5
Максимальное расстояние до Земли (106 км) 1658,5
Максимальная визуальная величина 0,43
ОСНОВНЫЕ ПАРАМЕТРЫ АТМОСФЕРЫ
Поверхностное давление (bar) более 1000 bars
Плотность атмосферы 1 bar (кг/м3) 0,19
Высота атмосферы (км) 59.5
Ср. температура 1 bar (К) 134 K / - 139 C
Ср. температура 0,1 bar (К) 84 K / - 189 C
Скорость ветра (м/с) 400 м/с (30° широт)
Молекулярный вес 2,07 г/моль
Основной состав атмосферы Молекулярный водород (H2) - 96,3%;Гелий (He) - 3,25%
Другие составляющие - ppm (промили) Метан (CH4) - 4500 (2000);Аммиак (NH3) - 125 (75);HD - 110 (58);Этан (C2H6) - 7 (1,5);
Аэрозоли Аммиачные и водные кристаллики льда, аммиак гидросульфид

Когда речь заходит о Юпитере, избежать употребления эпитета «гигантский» просто невозможно. Крупнейшая в нашей системе планета имеет десятки спутников, мощнейшее магнитное поле, а также образует своего рода миниатюрную Солнечную систему. Астрономы называют Юпитер «несостоявшейся звездой», а NASA шуточно рекомендует посетить этот газовый гигант всем тем, кто без ума от северных сияний.

Представляем вашему вниманию 10 интересных фактов о Юпитере:

  • Если бы Солнце было размером со стандартную входную дверь, то Земля бы была приблизительно как монета в 5 центов, а Юпитер – размером с баскетбольный мяч. Если говорить об объеме, то Юпитер может уместить в себе 1300 таких планет, как наша.
  • Юпитер – пятая по порядку планета Солнечной системы. Он вращается на расстоянии примерно 778 миллионов километров, или 5,2 АЕ от Солнца.

На представленном изображении крупнейшая в Солнечной системе планета запечатлена под необычным ракурсом. Если бы вы пролетали прямо над южным полушарием Юпитера, то перед вами предстала бы именно такая картина: красные, бронзовые и белые полосы, окружающие туманный полюс. Эти полосы являются характерной особенностью внешнего облика планеты / ©NASA

  • Один день на Юпитере равен 10 земным часам (ровно столько времени необходимо планете, чтобы совершить один полный оборот вокруг своей оси). Год на Юпитере равен 12 земным годам, или же 4,333 дням (период обращения вокруг Солнца).
  • Юпитер классифицируется как газовый гигант, в связи с этим он не имеет твердой поверхности. Тем не менее некоторые астрономы предполагают, что планета может иметь внутреннее твердое ядро размером с Землю.
  • Атмосфера Юпитера состоит в основном из водорода и гелия.

Как вы, наверное, знаете, Юпитер имеет мощное магнитное поле. Такое мощное, что может сгенерировать северное сияние в тысячу раз более сильное и яркое, чем мы можем наблюдать на Земле. Поэтому в далеком будущем этот газовый гигант может стать излюбленным местом фотографов, «одержимых» подобными световыми шоу / ©NASA/JPL

  • На сегодняшний день у Юпитера насчитывается 67 спутников, что является абсолютным рекордом среди планет Солнечной системы.
  • Юпитер, наряду с тремя другими газовыми гигантами Солнечной системы, имеет кольцевую систему. Она была обнаружена в 1979 году во время прохождения космического аппарата «Вояджер-1» мимо планеты.
  • Эта планета становилась объектом исследования многих космических аппаратов. Скоро к ней «причалит» автоматическая межпланетная станция NASA «Юнона».
  • Диск планеты неизменно (вот уже несколько сотен лет) украшает огромное пятно размером с нашу планету. Это знаменитое атмосферное образование называется Большое красное пятно (БКП). Об этом гигантском шторме, бушующем на Юпитере, известно еще с 17 века.

Посмотрев на эту фотографию, вам, наверное, покажется, что «большой брат» (он же Юпитер) следит за вами своим огромным, ярко выраженным «глазом». Однако это всего лишь случайность, и никакого глаза у Юпитера, разумеется, нет. Столь необычный снимок телескопу Hubble удалось сделать во время наблюдений за знаменитым Большим красным пятном. По счастливой случайности, в момент съемки по центру БКП прокатилось круглое пятно – тень от луны Ганимед. Это сделало Юпитер на мгновение похожим на одноглазого циклопа / ©NASA

  • Юпитер не может поддерживать жизнь в том виде, в котором мы ее знаем. Однако некоторые из спутников планеты имеют под своей поверхностью океаны, в которых могут быть признаки жизни.
  • Обладатель знаменитой системы колец и спутников-«пастухов» по праву считается одной из самых уникальных планет нашей системы. Этот газовый гигант с 2004 года находится под присмотром автоматической межпланетной станции «Кассини», благодаря которой мы с завидным постоянством узнаем о Сатурне что-нибудь новое.

Представляем вашему вниманию 10 интересных фактов о Сатурне:

  • Если бы Солнце было размером со стандартную входную дверь, то Земля бы была приблизительно как монета в 5 центов, а Сатурн – размером с баскетбольный мяч. По свои размерам он уступает только Юпитеру.
  • Сатурн – шестая по порядку планета Солнечной системы. Он вращается на расстоянии примерно 1,4 млрд. км, или 9,5 АЕ от Солнца.

На переднем плане этого поразительного снимка красуется шестигранный вихрь вокруг северного полюса Сатурна, который по размерам вдвое больше Земли. На заднем фоне кадра – удивительные кольца газового гиганта / ©NASA

  • Один день на Сатурне равен 10,7 земным часам (ровно столько времени необходимо планете, чтобы совершить один полный оборот вокруг своей оси). Год на Юпитере равен 29 земным годам, или же 10,756 дням (период обращения вокруг Солнца).
  • Сатурн классифицируется как газовый гигант, в связи с этим он не имеет твердой поверхности.

Газовые гиганты Солнечной системы – Юпитер, Сатурн, Уран и Нептун / ©NASA

  • Атмосфера Сатурна состоит в основном из водорода и гелия.
  • На сегодняшний день у Сатурна насчитывается 62 известных нам спутника. Абсолютный рекорд по этому показателю принадлежит Юпитеру, у которого их 67. Самый крупный спутник «окольцованной» планеты – Титан, который превосходит по своим размерам Меркурий и обладает единственной среди спутников Солнечной системы плотной атмосферой.

Спутники Сатурна Пандора и Прометей относятся к категории спутников-«пастухов», а их «охраняемым» объектом является кольцо F газового гиганта. Орбиты этих двух естественных спутников планеты неустойчивы и входят в резонанс друг с другом / ©NASA

  • Кольца, состоящие главным образом из частичек льда, меньшего количества тяжелых элементов и пыли, являются неотъемлемой частью всех четырех газовых гигантов Солнечной системы. Однако самую зрелищную структуру (семь колец с несколькими пробелами и промежутками между ними) имеет Сатурн.
  • На «рандеву» с Сатурном отправлялись только четыре космических аппарата: «Пионер-11», «Вояджер-1», «Вояджер-2» и «Кассини». Последний аппарат уже более 10 лет занимается исследованием газового гиганта, его колец и спутников.
  • Сатурн не может поддерживать жизнь в том виде, в котором мы ее знаем. Тем не менее, на некоторых спутниках Сатурна условия для жизни более благоприятные.

Многие ученые считают, что шестой по размеру спутник Сатурна – Энцелад – наиболее пригодное для жизни место в Солнечной системе за пределами Земли. Быть может, в будущем путешествие на эту сатурнианскую луну не будет таким уж невозможным. Титан – еще одна неплохая альтернатива для желающих побывать на спутнике какой-нибудь планеты. С Титана будет открываться великолепный вид на Сатурн / ©NASA/JPL

  • Впервые наблюдая Сатурн через телескоп в 1609–1610 годах, Галилео Галилей заметил странные объекты на каждой стороне планеты. Позже выяснилось, что эти объекты на самом деле являются кольцами Сатурна.

Трактовка положения Сатурна и Юпитера в гороскопах партнеров из книги "Синастрические аспекты" Ф.Сакоян, Л.Эккер

Рассмотрим, какую роль играют Сатурн и Юпитер в гороскопах партнеров. Сатурн и Юпитер - планеты во многом противоположные, влияние каждой из них зачастую подавляет проявления другой.

Совместимость по положению Сатурна и Юпитера в гороскопах партнеров

Хотя и в этом могут быть свои положительные стороны:юпитерянин значительно расширяет кругозор своего партнера, который, в свою очередь, предостерегает его от увлечения многими нежизнеспособными прожектами. Часто такое происходит при их трине и секстиле.

Квадрат же, квинкункс и оппозиция - напротив, указывают на возможное недовольство партнеров друг другом и проистекающие отсюда многочисленные конфликты. Соединение Юпитера и Сатурна указывает на отношения довольно благоприятные, однако все же еебесконфликтные.

Аспекты Сатурна и в гороскопах партнеров

Аспекты, образуемые двумя Сатурнами, Сатурном и Ураном, Нептуном и Плутоном, хотя и влияют как-то на взаимоотношения двух людей, проявляетсяя это все же слабее, чем при конфигурации с внутренними планетами.

Аспекты Сатурнов в двух гороскопах указывают на ту жизненную сферу, в которой разногласия партнеров наиболее вероятны, и где, следовательно, им в наибольшей степени есть, чему поучиться.

Когда Уран одного из партнеров образует трин или секстидь с Сатурном другого, уранический партнер способен в значительной степени повлиять на консервативные взгляда сатурнианина.

Когда же они находятся в квадрате, оппозиции или квинкунксе, тот, чей Уран образует эти аспекты с Сатурном другого, то и дело стремится изменить установленный жизненный порядок своего партнера, который в свою очередь может чрезмерно подавлять его открыто революционные взгляды. Все это делает отношения довольно напряженными

Немного общего имеют и Сатурн с Нептуном. Нептунианин слишком ненадежен для своего партнера, рассчитывающего на длительные и стабильные отношения:эти люди слишком разные, чтобы они могли быть вместе.

Хотя если аспекты этих планет благоприятные (трин или секстиль), то сатурнианин может в значительной степени помочь своему партнеру в воплощении его неземных идеалов, в свою очередь вдохновляясь ими.

Однако при квадрате, оппозиции, квинкунксе и даже соединении ненадежность нептунианина может сделать его партнера еще более замкнутым и сдержанным.

Я уже говорила, что все аспекты Сатурна с внешними планетами указывают не на сами человеческие отношения, а лишь на тот фон, на котором они разворачиваются. Это относится и к конфигурациям Сатурна с Плутоном.

Хотя традиционно считается, что чем больше в этом случае разница партнеров в возрасте, тем сильнее и интенсивнее будет их связб друг с другом, хотя сатурнианин может и побаиваться своего партнера.

Если Сатурн и Плутон находятся друг с другом в оппозицтт, квадрате, квинкунусе и оппозиции, то в отношениях двоих скорее всего не все будет обстоять благополучно - и, напротив, трин и секстиль указывают на связь очень продуктивную и творческую.

Сатурна в гороскопах партнеров - Гитлера и Евы Браун

Сатурн и Юпитер в гороскопах партнеров. Сравнивая гороскопы Гитлера и Евы Браун можно насчитать семь значимых аспектов Сатурна.

Сатурн в гороскопе Евы находится в соединении с Венерой и Марсом Гитлера, в квадрате с его Сатурном и секстиле - с Северным Узлом, а Сатурн Гитлера - в оппозиции с Солнцем Евы, в соединении с её МС и трине - с Юпитером.

Нет никакого сомнения в том, что вышеупомянутые связи Сатурна с Венерой и Марсом значили очень много для сильного влечения Гитлера и Евы друг к другу, однако в конечном счете оно переросло в эмоциональную и физическую враждебность партнеров.

Соединение Венеры и Марса в седьмом доме в гороскопе Гитлера находится в квадрате с его Сатурном в десятом доме. Квадрат Марса и Сатурна говорит о жестокости человека - вспомним об отнощении Гитлера к евреям!

Однако корни внешних проявлений этой жестокости - в глубинной неуверенности человека в своей силе, его неуверенность в себе самом. Этот страх может перейти и на его сексуальные отношения:он будет бояться оказаться импотентом.

Очень часто это бывает сопряжено и с гомосексуальными наклонностями:о страхе и нелюбви Гитлера к женщинам говорят и квадрат Венеры с Сатурном в его гороскопе.

Ева Браун - с Сатурном в соединении с его Марсом и Венерой и оппозицией с его Сатурном же, была идеальным объектом для вымещенгия всех психо-сексуальных проблем Гитлера.

Соединение его Марса и Сатурна Евы указывает на возможную фрустрацию фюрера с её стороны, способную довести того даже до физического насилия.

Сатурн Гитлера находится в оппозиции с Солнцем Евы, которое образует квадрат с её Сатурном. Кроме того, в её гороскопе Венера находится в трине с Сатурном.

Все это говорит о необходимой ей стабильности и защищенности в отношениях с другими. С Сатурном в оппозиции к её Солнцу, Гитлер, без сомнения, восхищался водолейским свободолюбием и независимостью Евы, однако в конце концов её непредсказуемость и нежелание подчиняться любому его требованию стали его раздражать.

Соединение Сатурна Гитлера и МС в гороскопе Евы указывает на то, что фюрер стремился подчинить её себе, навязав свои представления и взгляды. Однако конфигурации Сатурна в гороскопе Евы указывают и на её способность в какой-то степени управлять фюрером!

Кроме того, соединение МС Евы и Сатурна Гитлера говорит, что последний имел на нее поистине отцовское влияние, что усиливалось и положением Сатурна Евы в седьмом доме.

Сатурн Гитлера в трине с Юпитером Евы во многом нейтрализуют влияние всех неблагоприятных аспектов, и аспект этот указывает на их взаимоотношения как на источник процветания и силы для обоих.

Аспекты Сатурна во многом могут нейтрализовывать (хотя и не вовсе свести на нет) влияние конфигураций Луны и Венеры, а также Юпитера и Венеры в гороскопах двоих.

Хотя в данном случае именно эти последние ромешали отношениямГитлера и Евы Браун стать откровенно садо-мазохистскими. Такое большое количество конфигураций Сатурна в их гороскопах говорит о том, что встреча их была предопределена заранее, и судьба у них должна была быть одна.

Сатурн – вторая по размерам планета в нашей Солнечной системе и шестая планета от Солнца. Сатурн, точно так же как и Уран, Юпитер и Нептун, относятся к газовым гигантам. Свое название планета получила в честь бога земледелия.

В большей степени планета состоит из водорода, с незначительными примесями гелия и следами метана, воды, аммиака и тяжелых элементов. Что касается внутренней части, то она представляет собой незначительное ядро, включающее никель, железо и лед, покрытое газообразным внешним слоем и небольшим слоем металлического водорода. Внешняя атмосфера кажется при наблюдении из космоса однородной и спокойной, хотя иногда прослеживаются долговременные образования. У Сатурна есть планетарное магнитное поле, которое занимает промежуточное положение по напряженности между мощным полем Юпитера и магнитным полем Земли. Скорость ветра на планете может достигать до 1800 км/час, что намного больше чем на Юпитере.


Сатурн имеет заметную систему колец, которая главным образом состоит из частичек льда, имеющих меньшее количество пыли и тяжелых элементов. На данный момент вокруг Сатурна обращается 62 известных спутника. Самым крупным из них является Титан. Среди всех спутников он второй по размерам (после Ганимеда).

На орбите Сатурна располагается автоматическая межпланетная станция под названием «Кассини». Ученые запустили ее еще в 1997 году. А в 2004 году она достигла системы Сатурна, к задачам которой относятся изучение структуры колек и динамики магнитосферы и атмосферы.


Название планеты

Планета Сатурн была названа в честь римского бога земледелия. Позже он был отождествлен с предводителем титанов – Кроносом. Поскольку титан Кронос пожирал своих детей, он не пользовался популярностью среди греков. У римлян же бог Сатурн был в почете и уважении. Согласно древней легенде, он научил человечество обрабатывать землю, строить дома и выращивать растения. О временах его предполагаемого правления говорят «золотой век человечества», в его честь организовывались празднования, которые получили название Сатурналии. Рабы во время этих торжеств на незначительное время получали свободу. В индийской мифологии планете соответствует Шани.


Происхождение Сатурна

Стоит отметить, что происхождение Сатурна объясняют две главные гипотезы (точно так же, как и с Юпитером). Согласно гипотезе «концентрации», похожий состав Сатурна и Солнца заключается в том, что у этих небесных тел есть большая часть водорода. В результате малая плотность объясняется тем, что на изначальных стадиях развития Солнечной системы в газопылевом диске сформировались массивные «сгущения», которые дали начало планетам. Получается, что планеты и Солнце формировались схожим образом. Но как бы там ни было, эта гипотеза не объясняет различия состава Солнца и Сатурна.


Гипотеза «аккреции» говорит, что процесс образования Сатурна состоял из двух этапов. Сперва в течение двухсот миллионов лет шел процесс образования твердых плотных тел, которые напоминали планеты земной группы. В период этого этапа из области Сатурна и Юпитера диссипировалась некоторая часть газа, что в будущем сказалось на различии химических составов Солнца и Сатурна. После чего начался 2 этап, во время которого самые крупные тела смогли достигнуть удвоенной массы Земли. В течение нескольких сотен тысяч лет проходил процесс аккреции газа на эти тела из первичного протопланетного облака. Температура на втором этапе наружных слоев планеты достигала 2000 °C.

Сатурн среди прочих планет

Как уже было сказано выше, Сатурн относится к числу газовых планет: он не имеет твердой поверхности и в основном состоит из газов. Полярный радиус планеты – 54 400 км, экваториальный – 60 300 км. Среди остальных планет Сатурн отличается наибольшим сжатием. Вес планеты превышает массу Земли в 95,2 раза, но ее средняя плотность меньше плотности воды. Хотя массы Сатурна и Юпитера отличаются более чем в три раза, их экваториальный диаметр отличается только на 19%. Что касается плотности остальных газовых планет, то она существенно больше и составляет 1,27-1,64 г/см3 . Ускорение свободного падения вдоль экватора – 10,44 м/с2 , что сопоставимо с показателями Нептуна и Земли, но гораздо меньше, чем у Юпитера.


Вращение и орбитальные характеристики Сатурна

Среднее расстояние между Солнцем и Сатурном – 1430 млн км. Двигаясь со скоростью 9,69 км/с, планета обращается вокруг Солнца за 29,5 года (10 759 суток). Расстояние от Сатурна до нашей планеты меняется в пределах от 8,0 а. е. (119 млн км) до 11,1 а. е. (1660 млн км), среднее расстояние в период их противостояния примерно 1280 млн км. Юпитер и Сатурн находятся почти в точном резонансе 2:5 до Солнца в афелии и перигелии составляет 162 млн км.


Дифференциальное вращение атмосферы планеты подобно вращению атмосфер Венеры и Юпитера, а также Солнца. А. Вилльямс первым обнаружил, что скорость вращения Сатурна может меняться не только по глубине и широте, но и по времени. Анализ переменности вращения экваториальной зоны за 200 лет показал, что главный вклад в эту переменность вносит годовой и полугодовой циклы.

Атмосфера и строение Сатурна

Верхние слои атмосферы на 96,3% состоят из водорода и на 3,25% из гелия. Есть примеси аммиака, метана, этана, фосфина и некоторых других газов. В верхней части атмосферы аммиачные облака мощнее юпитерианских, в то время как облака нижней части состоят из воды или гидросульфида аммония.



Согласно с данными «Вояджеров», на планете дуют сильные ветра. Аппаратам удалось зарегистрировать скорость ветров в 500 м/с. В основном они дуют в восточном направлении. Их сила ослабевает одновременно с отдалением от экватора (могут появляться западные атмосферные течения). Исследования показали, что циркуляция атмосферы может проходить в слое верхних облаков, но и на глубине до 2000 км. Более того, по измерениям «Вояджера-2» стало известно, что ветры в северном и южном полушарии симметричны относительно экватора. Существует предположение, что симметричные потоки имеют связь под слоем видимой атмосферы.

Иногда в атмосфере Сатурна появляются устойчивые образования, которые представляют собой сверхмощные ураганы. Точно такие же объекты прослеживаются и на остальных газовых планетах Солнечной системы. Примерно 1 раз в 30 лет на Сатурне появляется «Большой Белый овал», который в последний раз видели в 2010 году (не такие крупные ураганы формируются чаще).


Во время штормов и бурь на Сатурне наблюдаются сильные разряды молнии. Вызванная ими электромагнитная активность колеблется с годами от практически полного отсутствия до сверхмощных электрических бурь.

Аппарат «Кассини» 28 декабря 2010 года сфотографировал шторм, который напоминал сигаретный дым. Очередной сильный шторм был зафиксирован астрономами 20 мая 2011 года.


Внутреннее строение

В глубине атмосферы планеты растут температура и давление, а водород переходит в жидкое состояние, но этот переход постепенный. На глубине в 30 тыс. км водород становится металлическим (3 млн атмосфер – давление). Магнитное поле создается циркуляцией электрических токов в металлическом водороде. Оно не настолько мощное, как у Юпитера. В центральной части планеты находится мощное ядро из тяжелых и твердых материалов – металлов, силикатов и предположительно льда. Его вес примерно составляет от 9 до 22 масс нашей планеты. Температура ядра – 11 700°C. Нельзя не отметить и тот факт, что энергия, излучаемая Сатурном в космос, в два с половиной раза больше энергии, которую он получает от Солнца. Существенная часть этой энергии генерируется благодаря механизму Кельвина – Гельмгольца. В то время, когда температура падает, соответственно уменьшается давление в ней, она понижается, а энергия переходит в тепло. Но такой механизм не может выступать единственным источником энергии Сатурна. Ученые предполагают, что дополнительная часть тепла появляется благодаря конденсации и последующему падению капель гелия через слой водорода вглубь ядра. Как следствие, потенциальная энергия капель переходит в тепловую. Область ядра, по оценкам ученых, имеет диаметр примерно 25 тыс. км.


Спутники Сатурна

Крупнейшие спутники Сатурна – Энцелад, Мимас, Диона, Тефия, Титан, Рея и Япет. Впервые они были открыты в 1789 году, но и по сей день остаются главными объектами исследования. Их диаметры варьируются от 397 до 5150 км. Распределение по массам отвечает распределению по диаметрам. Наименьшими эксцентриситетами орбиты обладают Тефия и Диона, наибольшим – Титан. Все спутники с известными параметрами располагаются выше синхронной орбиты, что приводит к их медленному удалению.


По состоянию на 2010 год известно 62 спутника Сатурна. Причем 12 из них открыты посредством космических аппаратов: «Кассини», «Вояджер-1», «Вояджер-2». Большинство спутников, кроме Фебы и Гипериона, характеризуются синхронным собственным вращением - каждый из них всегда повернут одной стороной к Сатурну. Информации о вращении мелких спутников нет. Дионе и Тефии сопутствуют по два спутника в точках Лагранжа L4 и L5.


На протяжении 2006 года команда ученых под чутким руководством Дэвида Джуитта, работающая на Гавайях, выявила с помощью телескопа Субару девять спутников Сатурна. Они отнесли их к нерегулярным спутникам, отличающимся ретроградной орбитой. Время их вращения вокруг Сатурна варьируется от 862 до 1300 дней.

Первые снимки высокого качества были получены с изображением одного из спутников Тефии только в 2015 году.

Сатурн - шестая планета по удалённости от центра нашей Солнечной системы. По своим габаритам он занимает второе место после Юпитера среди других планет, вращающихся на орбите Солнца. Учёные относят Сатурн к газовым гигантам. А назван он был в честь древнего бога плодородия, символом которого являлся серп.

В химическом составе планеты фигурирует водород. В незначительном количестве также находятся примеси гелия, метана, аммиака и молекулы воды. Ядро планеты состоит из железа, льда и никеля. Сверху оно покрыто металлическим водородом и лёгкой газовой оболочкой. Если наблюдать за атмосферой гиганта из космоса, то её можно будет охарактеризовать как достаточно однородную и спокойную, с наличием в ней крупных образований. Скорость ветра в некоторых областях планеты способна достигать отметки 1800 км/ч, что существенно превышает подобные показатели на Юпитере. Сила напряжённости магнитного поля Сатурна находится где-то посередине между показателями полей Земли и Юпитера. Если говорить конкретно о площади магнитного поля гиганта, то оно простирается почти на 1 миллион километров по направлению к Солнцу.

Особенностью Сатурна является его знаменитая система видимых колец. Они состоят из замёрзших частиц газа, пыли и тяжелых элементов. Под влиянием гиганта на текущий момент находится 63 спутника. Титан - крупнейший среди них. Он же считается вторым по габаритам спутником планет, которые вращаются вокруг Солнца. Самым крупным спутником Солнечной системы является Ганимед, он находится под властью Юпитера.
В 1997 году на орбиту Сатурна была запущена межпланетная автоматическая станция «Кассини». В 2004 году она достигла системы Сатурна и с тех пор осуществляет наблюдение за гигантом. Задачей станции является исследование колец, их структуры, динамических процессов в атмосфере и магнитном поле Сатурна.

Сатурн как планета Солнечной системы


Как было упомянуто ранее - Сатурн причислен к газовым гигантам на основании того, что у него не имеется твердой поверхности и состоит он главным образом из летучих веществ - газов. Радиус экватора Сатурна равен 60,3 тысячи километров, а полярный радиус - 54,4. Известно, что среди всех планет Солнечной системы Сатурну присуще самое мощное сжатие. Масса гиганта почти в 100 раз больше массы Земли. Но средняя плотность газовой планеты составляет около 0,7 г/см2. Этот показатель свидетельствует о том, что Сатурн является единственной в своём роде планетой, принадлежащей к нашей звёздной системе, плотность которой меньше плотности воды. При значительном различии (почти в 3 раза) показателей массы Сатурна и Юпитера, разница между их экваториальными диаметрами равна всего лишь 19%. Если говорить о показателях плотности других планет из числа газовых гигантов, то у них они значительно выше.

Орбитальные характеристики и вращение

Дистанция от Солнца до Сатурна составляет 1430 миллиона километров. Полный оборот вокруг светила гигант совершает почти за 11 тысяч дней (при скорости вращения 9,8 км/с), что равно примерно 30 земным годам.

Видимые объекты, находящиеся в атмосфере Сатурна, имеют разную скорость вращения, это зависит от широты, на которой они располагаются.
Полный оборот Сатурна вокруг его оси совершается в течение 10 часов и 34 минут. Он также является единственной планетой, осевая скорость вращения которой на экваторе больше, нежели орбитальная.

Показатели скорости вращения Сатурна различны как по широте и долготе, так и по временным промежуткам. Такой вывод сделал исследователь Вильямс. Данные о переменности периода вращения экваториальной области гиганта за период в 200 лет дали основания полагать, что в основном на это воздействуют циклы, полугодовой и годовой.

Происхождение планеты Сатурн

Происхождение Сатурна объясняется двумя основными гипотезами. Гипотеза «контракции» заключается в сопоставлении газового гиганта с Солнцем по количеству вращающихся вокруг них тел и наличию значительной доли водорода в химическом составе. Объясняют это тем, что при формировании планет в ранней Солнечной системе также образовывались массивные «сгущения». Именно из этого материала и стали в дальнейшем формироваться планеты. То есть, согласно первой теории, они формировались аналогичным способом, что и само Солнце. Однако с помощью этой гипотезы невозможно объяснить причину различия в химическом составе Солнца и Сатурна.

По гипотезе «аккреции» формирование Сатурна происходило в два этапа. Сторонники этого мнения считают, что сначала гигант сформировался по тому же принципу, по какому образовывались твёрдые планеты. Но потом в область Сатурна из области Юпитера стали регулярно попадать потоки газа, сильно изменившие химический состав планеты. Начался второй этап становления Сатурна. В более поздний период вблизи поверхности гиганта происходил процесс аккреции газа. Температура наружных слоёв планеты в это время достигала 2000 °C.

Атмосфера Сатурна и её строение

Верхние слои атмосферы гиганта лишь на 3,5% состоят из гелия, а оставшиеся 96,5% - из водорода. Также в некотором количестве имеются примеси фосфина, аммиака, этана и метана. Во время миссий «Вояджеров» было обнаружено, что на Сатурне присутствуют сильнейшие потоки ветра. С помощью орбитальных аппаратов учёным удалось установить их примерную скорость - 500 м/с. Такие ветры, как правило, дуют в восточном направлении. Их мощь ослабевает с удалением от экватора. Потенциал потоков значительно уменьшается ввиду того, что им начинают противостоять западные ветры. Учёные обнаружили также тот факт, что «движение» происходит как в верхних слоях атмосферы Сатурна, где находятся облака, так и в нижних. На глубине до 2 тысяч километров также присутствует определённая активность. С помощью измерений, сделанных «Вояджером», учёным удалось установить, что ветры всегда направлены вдоль экватора как в северном, так и в южном полушариях.

Астрофизики из Британии обнаружили ещё один тип полярного сияния, который также присутствует на Сатурне. Оно представляет собой кольцо, опоясывающее один из полюсов газового гиганта.

Также в атмосфере планеты время от времени появляются устойчивые образования в виде сверхмощных ураганов. Такие же объекты ранее наблюдались и у других газовых планет нашей системы. Что касается Сатурна, то впервые «Большой белый овал» аппаратам удалось зафиксировать около 15 лет назад. Проявляется он на планете также с определённой частотой - один раз в 30 лет.

В 2008 году межпланетная автоматическая станция «Кассини» сделала фотографии северного полюса планеты. Съёмка на момент исследования велась в инфракрасном диапазоне. Учёные заметили полярные сияния, которые также были признаны «уникальным» явлением для планет, входящих в Солнечную систему. Новые снимки сияний также удалось получить в видимом и ультрафиолетовом диапазонах. Сияния, обнаруженные в области полюсов Сатурна, почти всегда имеют кольцеобразную форму, редко спиральную или овальную. Полярные сияния имеют голубой цвет, а облака, лежащие внизу - красный.

По сравнению с полярными сияниями Юпитера, на Сатурне их происхождение не вызвано неравномерностью вращения плазменных слоёв магнитосферы. Многие учёные придерживаются мнения, что возникновение сияний как раз связано с воздействием солнечных ветров. Вид и форма сияний Сатурна время от времени изменяются.

В определённые периоды, сопровождающиеся сильными магнитными штормами и бурями, на Сатурне можно наблюдать мощные разряды молнии. Известно, что они влияют на электромагнитную активность планеты, которая всегда нестабильна. В 2010 году космический аппарат «Кассини» сумел отчетливо снять шторм, который напоминал дым от сигареты. Подобный по мощности шторм был также зафиксирован станцией в середине 2011 года.

Шестиугольник Сатурна. Образование на северном полюсе планеты

Скопившиеся в районе северного полюса планеты облака образуют гексагональную фигуру - шестиугольник. Впервые феномен был открыт при анализе снимков, полученных со станции «Вояджер» в 80-х годах прошлого столетия. Обнаруженное явление признали уникальным для нашей Солнечной системы. Загадочный шестиугольный гигант находится на широте 78°. Период его вращения равен 10 часам и 40 минутам. Этот период сопоставим с периодом снижения или увеличения радиоизлучения планеты.
Выяснилось, что облака, образующие шестиугольник, имеют редкие структуры. Также исследования 2006 года установили, что это образование оставалось стабильным на протяжении 20 лет.

Следует отметить, что некоторые облака в атмосфере Земли также могут обладать шестиугольной формой. Но сатурнианские шестиугольники имеют более правильную форму.

Подробное объяснение открытому явлению пока никому не удалось найти. Но все же учёные смоделировали структуру атмосферы Сатурна и выяснили вероятные причины образования скоплений именно такой формы. Во время эксперимента был взят баллон с водой, вмещающий 30 литров, который закрепили на вращающуюся поверхность. Внутри него были размещены кольца небольшого диаметра, которые вращались быстрее самой ёмкости. Было установлено, что чем больше становилась скорость вращения кольца, тем больше форма вихря «отклонялась» от круговой формы. В результате эксперимента учеными был получен шестиугольный вихрь.

Внутреннее строение Сатурна


Для нижних слоёв атмосферы Сатурна характерны более высокая температура и давление. Водород здесь переходит в жидкое состояние. Этот переход не происходит резко. На глубине 30 тысяч км водород под давлением приблизительно 3 миллиона атмосфер становится металлическим. Циркуляция токов в таком водороде начинает формировать магнитное поле. В центральной части планеты располагается крупное ядро из металлов, льда и силикатов. Его температура равна 11,7 тысячи °C. При этом энергия, высвобождаемая планетой в космическое пространство, примерно в 2,5 раза превышает энергию, которую Сатурну даёт Солнце. Определённая часть энергии генерируется. Сжимаясь, она начинает преобразовываться в тепло. Но такое явление - не единственный источник энергии газового гиганта. Считается, что часть тепла создаётся на планете из-за процесса конденсации гелия и дальнейшего проникновения его капель (соединений) через менее плотный водородный слой. Результат - переход потенциальной энергии капель гелия в тепловую энергию.

Структура магнитного поля Сатурна

Магнитную сферу Сатурна открыли при выполнении миссии орбитального комплекса «Пионер-11». Это произошло в 1979 году. Оказалось, что магнитосфера планеты по своим размерам уступает лишь магнитосфере Юпитера. Зона между магнитосферой планеты и областью, которой достигает солнечный ветер, находится от Сатурна на удалении, равном 20-ти его радиусам. Хвост магнитосферы измеряется несколькими сотнями таких радиусов. Магнитосфера планеты состоит из плазмы, которую продуцируют Сатурн и его спутники. Среди спутников важную роль играет Энцелад, точнее, его гейзеры. Они выбрасывают водяной пар, который подвергается ионизации магнитным полем планеты.

Видимым признаком «контакта» магнитосферы Сатурна и солнечного ветра являются яркоокрашенные полярные сияния овальной формы, окружающие полюса планеты. Они образуются путём генерации энергии, освобождающейся вследствие взаимодействия магнитосферы и солнечного ветра. В атмосфере Сатурна полярные сияния можно наблюдать в инфракрасном, видимом и ультрафиолетовом диапазонах. Магнитное поле Сатурна, равно как и Юпитера, формируется вследствие эффекта динамики во время циркуляции металлического водорода во внешних слоях ядра планеты.

Магнитное поле Сатурна можно охарактеризовать как дипольное (как у Земли), где всегда присутствуют два полюса - южный и северный. Магнитный диполь газового гиганта напрямую связан с вращением его оси. Именно это и делает поле ассиметричным. У этого диполя наблюдается небольшое смещение вдоль оси планеты по направлению к северному полюсу.
Внутреннее магнитное поле газового гиганта способствует отклонению солнечного ветра от его поверхности, препятствуя его «контакту» с атмосферой. Оно также влияет на состав плазмы магнитосферы планеты, которая становится отличной от плазмы солнечного ветра. Как и в случае с Землёй, область, создающая границу между магнитосферой и солнечным ветром, называют магнитопаузой. Дистанция от магнитопаузы до «сердца» Сатурна находится в промежутке 16-27 Rs. На это расстояние оказывает влияние давление солнечного ветра, которое напрямую зависит от активности звезды на данный момент. Принято считать, что среднее расстояние от планеты до магнитопаузы - 22 Rs. Длинный хвост магнитосферы образовывается из-за влияния мощных потоков солнечного ветра.

Исследования Сатурна

Сатурн представляет собой одну из пяти крупнейших планет нашей звездной системы, которую можно увидеть с поверхности Земли без применения специальной оптики. Максимум блеска Сатурна превосходит значение первой звёздной величины. Чтобы стали видны кольца Сатурна, необходимо применение телескопа диаметром 15 мм+. При использовании приборов с хорошей увеличительной способностью становится видна более тёмная «шапка» на полюсах планеты, а также тень колец Сатурна. При апертуре (характеристике) оптического прибора в 150-200 мм можно увидеть пять крупных полос облаков атмосферы.

Впервые Галилео Галилей наблюдал Сатурн с помощью телескопа в начале XVII века. Планета выглядела не как однородный небесный объект, а как три отдельных, находящихся рядом друг с другом. Сначала возникло мнение, что два из них являются крупными спутниками Сатурна. Но несколько лет спустя самим Галилеем не было обнаружено крупных спутников планеты. В середине XVII столетия Гюйгенсом при помощи более мощного прибора было установлено, что те самые спутники - это не что иное, как тонкий круг, опоясывающий планету, не соприкасающийся с ней. Учёные также открыли Титан - крупнейший спутник Сатурна. В последней четверти XVII века к плотному изучению гигантской планеты приступил Джованни Кассини. Он обнаружил, что крупное кольцо на самом деле состоит из двух, разделённых зазором, который получил название «щель Кассини». Также учёным было открыто ещё несколько спутников газового гиганта: Рея, Япет, Тефия и Диона.

Только в конце XVIII века У. Гершель открыл два новых спутника Сатурна: Мимас и Энцелад. После этого британскими астрономами был обнаружен спутник Гиперион со странной, несферической, формой. И уже в конце XX века Уильямом Пикерингом была открыта Феба - нерегулярный спутник Сатурна. В 40-х годах XX столетия Джерард Койпер заявил о наличии мощной атмосферы на Титане - самом крупном спутнике гиганта, что стало уникальным явлением для спутников планет Солнечной системы.

В 90-х годах прошлого века Сатурн со всеми его спутниками и кольцами многократно исследовался с помощью телескопа «Хаббл». Пристальные наблюдения помогли открыть много новых фактов, которые были недоступны при одноразовых пролётах аппаратов «Пионер-11» и «Вояджеров» над планетой.

Исследования Сатурна космическими аппаратами «Кассини-Гюйгенс», «Пионер-11», «Пионер-22», «Вояджер»

В 1979-ом году американская автоматическая станция «Пионер-11» впервые за всю историю астрономии пролетела рядом с Сатурном. Запланированное исследование планеты началось в августе. Максимальное приближение станции к поверхности Сатурна состоялось в начале сентября 1979 года. В тот момент были сделаны уникальные кадры нескольких областей планеты и её спутников. Но разрешение аппаратов, осуществлявших наблюдения, было недостаточным для получения чётких снимков поверхности планеты-гиганта. Также ввиду дефицита солнечного света изображения оказались слишком тёмными. Чтобы получить больше информации о загадочных кольцах Сатурна, аппарат был направлен в их область и пролетел под кольцами. Именно тогда было открыто тонкое кольцо «F». В миссию «Пионера-11» также входило измерение температуры Титана.

Через год после исследований Сатурна, осуществлённых «Пионером-11», к изучению планеты также были подключены американские станции «Вояджер-1» и «Вояджер-2». Первая машина сблизилась с Сатурном 13 ноября 1980 года и сделала множество снимков лучшего качества, чем это было сделано «Пионером-22». Также в это время учёным удалось получить изображения хорошего качества спутников Сатурна: Титана, Реи, Энцелада, Дионы, Мимаса и Тефии. В результате данной миссии станция сумела приблизиться к Титану на расстояние 6,5 километра, что позволило получить больше информации об атмосфере и температуре поверхности спутника. Также было обнаружено, что Титан имеет очень плотную атмосферу, не пропускающую достаточного для получения качественных снимков количества солнечного света.

Ровно через год к Сатурну приблизилась другая автоматическая космическая станция - «Вояджер-2». Главная миссия этого аппарата заключалась в проведении исследований атмосферы гиганта при помощи специального радара. Благодаря ему и удалось выяснить данные о плотности и температуре атмосферы планеты. За весь период наблюдений им было сделано и направлено на Землю примерно 16 тысяч снимков. Но во время выполнения миссии система, отвечающая за поворот камеры, вдруг заклинилась на несколько дней. По этой причине некоторые важные снимки учёными не были получены. Потом аппарат развернулся и полетел в сторону Урана. Благодаря этим машинам удалось получить огромное количество информации о магнитном поле планеты, структуре её колец, о штормах в атмосфере Сатурна. Также астрофизики открыли щели Килера и Максвелла, обнаружили новые спутники.

В 1997 году к исследованиям газового гиганта приступила станция «Кассини-Гюйгенс», которой удалось достигнуть системы Сатурна и выйти на орбиту планеты. Главной задачей данной миссии являлось тщательное исследование структуры колец и всех открытых спутников Сатурна. Также учёные планировали изучить динамику магнитосферы и атмосферы планеты, как можно лучше исследовать её самый крупный спутник - Титан.

До того как станция оказалась на орбите планеты в 2004 году, она пересекла область обращения Фебы, благополучно сделав её фотографии и отправив их на Землю. Также американская орбитальная машина «Кассини» несколько раз оказывалась вблизи Титана. Благодаря этому были сняты его озёра с береговой линией, острова и горы спутника. Вскоре после этого произошло отсоединение европейского зонда «Гюйгенс» от американского аппарата с целью приближения к поверхности планеты. Спуск при помощи парашюта длился около 2,5 часа. Зонд взял пробы атмосферы газового гиганта. Их дальнейший анализ показал, что нижние слои облаков составляют жидкие азот и метан, а верхние - лёд, образованный из метана.

В 2005 ученые приступили к наблюдению излучения, исходящего от Сатурна. В январе 2006 года на газовом гиганте был зафиксирован сильнейший шторм. Он стал причиной вспышки, в 1000 раз превосходящей по интенсивности нормальное излучение планеты. В это же время НАСА обнародовала новость о возможном нахождении следов воды в составе жидкости, извергаемой гейзерами Энцелада. В 2011 году представители НАСА заявили о том, что Энцелад является наиболее подходящим для поддержания жизни объектом, находящимся в Солнечной системе. Снимки, полученные со станции «Кассини», также помогли сделать другие, не менее значимые, открытия. Во время анализа изображений, сделанных космическим аппаратом, удалось выявить новые кольца планеты - R/2004 S1 и R/2004 S2. Ученые пришли к мнению, что они были образованы вследствие столкновения кометы или метеорита с Эпиметеем или Янусом. В 2006 «Кассини» произвёл съёмку, благодаря которой ученые обнаружили на поверхности Титана углеводородное озеро, расположенное вблизи его северного полюса. Факт находки окончательно подтвердила съёмка 2007 года.

В 2008 году «Кассини» направил на Землю фотографии с изображением северного полушария Сатурна. Оказалось, что с 2004 года, когда аппарат был вблизи планеты, на ней произошло много изменений. Ведь за четыре года отсутствия «Кассини» она приобрела совершенно другие оттенки, и объяснения этому феномену учеными пока не найдено. Они лишь предположили, что это может быть связано со сменой времени года.

За период миссии «Кассини», которая длилась с 2004 по 2009 год, удалось открыть еще 8 новых спутников гиганта. Выполнение главных задач, поставленных перед миссией, аппарат завершил в 2008 году. Но пребывание «Кассини» в зоне Сатурна продлилось вплоть до 2010 года. Учёные говорят, что на сегодняшний день и на период до 2017 года задача зонда - изучение циклов сезонов газовой планеты.
В 2009 году было принято решение о создании нового совместного проекта НАСА и ЕКА, который заключался в запуске ещё одного межпланетного аппарата в область Сатурна, а затем к его двум спутникам - Энцеладу и Титану. Миссия космической станции была рассчитана так, чтобы после 8 лет путешествия она сама стала спутником Титана.

Сатурн и его спутники


Самыми крупными спутниками Сатурна являются: Титан, Энцелад, Тефея, Мимас, Рея, Диона и Япет. Их обнаружили ещё в XVIII веке, но изучение продолжается и сегодня. Диаметры этих объектов находятся в пределах 400-5200 километров. Титан обладает самым большим орбитальным эксцентриситетом, а у Тефии и Дионы он наименьший.

Титан является наиболее крупным спутником Сатурна. Преимущественно в его состав входят скальные породы и водяной лёд (50% на 50%). Примерно такие же пропорции встречаются в составе других газовых планет. Но Титан отличается от них по химическому составу и структуре его атмосферы. Она включает преимущественно азот с небольшой примесью метана и этана, участвующих в образовании облаков. Титан был признан единственным объектом, помимо нашей планеты, на поверхности которого была обнаружена вода. Именно поэтому учёные не исключают присутствия на нём жизни в виде простейших организмов.

Другие спутники Сатурна также имеют свои особенности. Например, у Япета оба полушария имеют разные альбедо. Именно поэтому Джованни Кассини, открывший спутник, обратил внимание, что виден он только тогда, когда находится на определённой стороне Сатурна. Полушария Реи и Дионы также имеют свои особенности. Например, в области одного полушария Дионы находится множество кратеров. А в области её заднего полушария имеется большое количество затемнённых участков, пронизанных светлыми блестящими линиями, которые в действительности представляют собой ледяные хребты и обрывы. Главная особенность спутника Мимас - кратер Гершель, диаметр его достигает 130 км. Кратер гигантских размеров имеется и на Тефии. Его диаметр равен 400 км. Что касается ещё одного крупного спутника Сатурна - Энцелада, то судя по изображениям «Вояджер-2» области его поверхности имеют разный геологический возраст.

Исследования, проводимые на Гавайях с 2006 года с помощью японского телескопа Субару, позволили открыть ещё 9 спутников газового гиганта. Все они оказались нерегулярными спутниками, отличающимися ретроградной орбитой.

На 2010 год учёным было известно о 62 спутниках Сатурна. Вращение всех обнаруженных спутников, за исключением Фебы и Гипериона, характеризуется как синхронное собственное. Лишь одна их сторона всегда обращена к Сатурну. Данных об обращении более мелких спутников на текущий момент не существует.

Сатурн и Земля. Сравнение. Кольца Сатурна


На сегодняшний день установлено, что все газовые планеты, входящие в Солнечную систему, имеют кольца. Но Сатурн обладает самыми крупными кольцами. Они располагаются под углом почти 28° по отношению к плоскости эклиптики. Именно по этой причине с поверхности Земли они выглядят всегда по-разному. Гюйс выдвинул предположение, согласно которому данные кольца не являются плотными телами, а сформированы из мельчайших фрагментов, находящихся в области околопланетной орбиты. Догадка полностью подтверждена спектрометрическими наблюдениями А.А. Белопольского.

Сатурн имеет три основные кольца и одно - второстепенное, более тонкое. Они отражают большее количество света, чем диск самой планеты. Три основных кольца учёные условились обозначать заглавными латинскими буквами. Кольцо «В» представляет собой центральное, самое яркое и крупное, отделённое от кольца «А» щелью Кассини, в которой также находятся тонкие кольца. Во внутренней части «А» тоже имеется тонкая щель - разделительная полоса Энке. Кольцо «С» характеризуется как почти прозрачное.

Кольца гиганта сами по себе очень тонкие. Они имеют диаметр приблизительно 250 тысяч километров. При этом толщина каждого из них не достигает и 1 километра. Видимыми их делает количество составляющего вещества. Если его сконцентрировать, то диаметр полученного монолита не превысит 100 километров. Изображения, полученные в результате исследования Сатурна, подтверждают, что эти кольца в действительности образованы из более тонких колец, разделённых щелями. На 93% их состав - лёд с примесями. Частицы, из которых образуются кольца, имеют на удивление малый размер - от 1 см до 10 м.

В движении частиц колец и спутников Сатурна также существует определённая согласованность. Часть из них относится к так называемым «спутникам-пастухам», которые удерживают кольца вокруг планеты. Мимас находится в резонансе со щелью Кассини в соотношении 2 к 1. Сила притяжения воздействует на «материал» Мимаса, он начинает удаляться. В 2010 году, когда были получены данные с аппарата «Кассини», учёные узнали, что кольца Сатурна подвержены определённым колебаниям. По общепринятому мнению, они возникают по причине «контакта» частиц, движущихся в кольцах. Реальное происхождение колец Сатурна до конца не раскрыто. По одной из гипотез, которую выдвинул Э. Рош в середине XIX века, они были образованы из-за распада жидкого спутника под влиянием приливных сил. Другая популярная версия склоняется к тому, что спутник разрушился вследствие удара кометы или какого-либо другого небесного тела.
Согласно одной гипотезе, учёные допускают наличие колец также и у одного из спутников Сатурна - Реи.

Слух 1921 года

В 1921 году повсюду распространился страшный слух. Планета Сатурн лишилась своих колец, их частицы разлетелись по Галактике и скоро упадут на Землю. Умы людей были взбудоражены ожидаемым событием. Газеты публиковали подробные расчеты, когда упадут части кольца. Причиной появления слухов стало то, что кольца повернулись ребром к Земле и её наблюдателям. А поскольку кольца очень тонкие, то с помощью приборов того времени их невозможно было разглядеть. Люди восприняли «исчезновение» колец в прямом смысле, это и породило слух.

Название Сатурна связано с мифологией

Планета получила название в честь древнеримского бога земледелия. В более позднюю эпоху его начали отождествлять с титаном Кроносом. Ввиду того что, по легенде, персонаж поедал собственных отпрысков, древние греки не почитали Сатурна. Римляне же поклонялись этому божеству. Считалось, что именно Сатурн обучил людей выращиванию растений и построению жилищ, возделыванию земли. Время его мифического царствования - «золотой век человечества». В его честь люди устраивали праздники - Сатурналии, во время которых все невольные на определённое время получали свободу.

Похожие статьи

© 2024 myneato.ru. Мир космоса. Лунный календарь. Осваиваем космос. Солнечная система. Вселенная.